簡易檢索 / 詳目顯示

研究生: 黃薇臻
Wei-Chen Huang
論文名稱: 電弧爐收集之集塵灰運用於化學迴圈燃燒程序的可行性評估
Feasibility Evaluation of Electric Arc Furnace Dust as Oxygen Carrier for Chemical Looping Combustion Process
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 129
中文關鍵詞: 化學迴圈燃燒程序電弧爐收集之集塵灰鋅鐵氧化物尖晶石結構載氧體
外文關鍵詞: Chemical Looping Combustion, Electric Arc Furnace Dust, Zinc Ferrite, Oxygen Carrier
相關次數: 點閱:395下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學迴圈燃燒程序被美國能源總署認為是極具發展潛力之二氧化碳捕捉技術,此技術不需耗費大量成本與能源就可以把二氧化碳分離、捕捉且利用。然而,載氧體在化學迴圈燃燒程序中扮演著一個很重要的角色,為影響整個反應是否連續操作的關鍵所在。一般而言會先以熱重分析儀來評估載氧體的反應性確定可行性,再依照運行狀況去做修正並且製備,但載氧體的製備是非常耗時也耗成本的,因此本研究致力於評估電弧爐收集之集塵灰當作載氧體運用於化學迴圈燃燒程序之可行性。
電弧爐收集之集塵灰為電弧爐在熔煉過程中,高溫高壓鍋爐中所產生的粉塵在逸散至大氣前,通過集塵器所攔截的粒狀物,其中包括鋅、鐵、錳等成份,主要結晶相為ZnO與ZnFe2O4。因此本實驗利用傳統之陶瓷製程方式,將氧化鐵混合氧化鋅於高溫900℃鍛燒2小時,製備鋅鐵氧化物尖晶石結構載氧體,並且藉由X光繞射儀鑑定材料成分與結構、比表面積分析儀測材料之比表面積、場發射掃描式電子顯微鏡觀察粉體之微觀結構以及熱重分析儀測試Fe2O3、ZnO和合成之ZnFe2O4載氧體對合成氣氣氛之反應活性和反應機制。結果顯示,三者之起始還原溫度依序為ZnO > ZnFe2O4 > Fe2O3。其中,本實驗所合成之ZnFe2O4載氧體在還原氣氛下會先被分解成ZnO及Fe2O3,然後再分別被還原成金屬Zn與金屬Fe,因此在高溫還原時,整個反應呈現多相態之變化,並且伴隨著鋅蒸氣釋出的問題存在。
為了改善高溫還原之鋅蒸氣釋出的問題,本實驗使用氧化鋁當作惰性擔體配合ZnFe2O4載氧體,結果發現經過1100℃鍛燒2小時之ZnFe2O4混合Al2O3粉末會形成ZnAl2O4惰性副產物,將有效改善反應時的鋅蒸氣問題。所以本實驗分別把ZnFe2O4/Al2O3系統與電弧爐收集之集塵灰/Al2O3系統之載氧體於還原溫度750℃之操作條件,進行連續20圈之還原-氧化反應。結果顯示,加入氧化鋁惰性擔體之ZnFe2O4載氧體以及電弧爐收集之集塵灰在多圈之還原-氧化反應中具有良好之性能。因此使用電弧爐收集之集塵灰/Al2O3系統運用於化學迴圈燃燒程序中將非常具有潛力。


Chemical looping combustion (CLC) process has been recognized as a promising technology of carbon dioxide (CO2) captured by International Energy Agency (IEA). This technology is involved of capture, separation and utilization CO2 gas without high cost and resources. However, oxygen carriers play an important role in the CLC process and the performance is a key issue for the application of CLC process. However the preparation of oxygen carriers is time-consuming and non-cost-effective. Therefore, in this study we investigated the feasibility of using Electric Arc Furnace Dust (EAFD) as oxygen carrier in CLC process.
The main compound of the EAFD is zinc ferrite (ZnFe2O4). Therefore, this study firstly investigated the reactivity of ZnFe2O4 oxygen carriers in CLC process. ZnFe2O4 powder was prepared by ball milling equimolar ZnO and Fe2O3 in a high temperature solid-state reaction. The crystalline phases of the powder were identified by X-ray diffraction (XRD), specific surface area was measured by Brunauer-Emmett-Teller (BET), surface morphology of powder was analyzed with Field-Emission Scanning Electron Microscopy (FE-SEM) and the mechanism of reduction behavior was determined by Thermogravimetric Analyzer (TGA). The initial reduction temperature is found to be strongly depended on the materials with the order of ZnO > ZnFe2O4 > Fe2O3. Due to the proposed mechanism underlying the redox cycling test, ZnFe2O4 oxygen carrier under reducing species is considered a complex gas-solid reaction, accompanying the problem of zinc vapor releasing.
In order to suppress the emission of zinc vapor, ZnFe2O4/Al2O3 and EAFD/Al2O3 systems calined at 1100℃were used as oxygen carriers, which ZnAl2O4 phase is formed as the inert support. The ZnAl2O4 phase is quite stable below the reaction temperature of 750℃. After twenty successive cycles at 750℃, ZnFe2O4/Al2O3 and EAFD/Al2O3 systems demonstrated higher redox cycling behaviors. The results show the feasibility of using the ZnFe2O4/Al2O3 and EAFD/Al2O3 systems as oxygen carrier candidates in a reversible chemical looping combustion process.

中文摘要 I 英文摘要 II 致謝 IV 目錄 V 圖索引 VIII 表索引 XII 第一章 緒論 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 2.1 化學迴圈燃燒程序 5 2.2 載氧體的性能 7 2.2.1 熱力學特性 7 2.2.2 物理特性 7 2.2.3 其他特性 10 2.3 載氧體的選擇 11 2.3.1 鐵系(Fe)載氧體 11 2.3.2 鎳系(Ni)載氧體 16 2.3.3 銅系(Cu)載氧體 18 2.3.4 其餘常見載氧體 21 2.3.5 複合型載氧體 25 2.3.6 尖晶石結構載氧體 29 2.3.7 天然礦石當作載氧體 33   2.4 惰性擔體的選擇 35 2.5 反應器的設計與種類 36 2.6 燃料的研究 38 2.7 反應動力學 41 2.8 電弧爐收集之集塵灰(Electric Arc Furnace Dust) 45 第三章 實驗設備與程序 3.1 實驗藥品 50 3.2 材料製備 51 3.2.1 鋅鐵氧尖晶石結構載氧體的製備 51 3.2.2 鋅鐵氧尖晶石結構載氧體搭配Al2O3惰性擔體 51 3.2.3 電弧爐收集之集塵灰搭配Al2O3惰性擔體 51 3.3 實驗設備與分析儀器 53 3.3.1 全反射X光螢光分析儀(TXRF) 53 3.3.2 X光繞射儀(XRD) 54 3.3.3 比表面積分析儀(BET) 54 3.3.4 場發射掃描式電子顯微鏡(FE-SEM) 55 3.3.5 熱重分析儀(TGA) 55 第四章 結果與討論 4.1 製備鋅鐵氧化物尖晶石載氧體 57 4.1.1 初始粉末及合成ZnFe2O4尖晶石結構載氧體之材料分析 57 4.1.2 初始粉末及合成ZnFe2O4尖晶石結構載氧體之還原性能分析 61 4.2 鋅鐵氧尖晶石結構載氧體搭配氧化鋁惰性擔體運用於化學迴圈燃燒程序 75 4.2.1 不同鍛燒溫度對於鋅鐵氧尖晶石結構載氧體搭配氧化鋁之材料分析 75 4.2.2 鋅鐵氧尖晶石結構載氧體搭配氧化鋁之還原性能分析 78 4.2.3 鋅鐵氧尖晶石結構載氧體搭配氧化鋁之多圈還原-氧化性能分析 83 4.3 電弧爐收集之集塵灰搭配氧化鋁惰性擔體運用於化學迴圈燃燒程序 89 4.3.1 初始電弧爐收集之集塵灰粉末材料分析 89 4.3.2 電弧爐收集之集塵灰搭配氧化鋁之材料分析與多圈還原-氧化性能分析 92 第五章 結論與未來展望 5.1 初始粉末及合成ZnFe2O4尖晶石結構載氧體之材料分析與還原性能分析 99 5.2 鋅鐵氧尖晶石結構載氧體搭配氧化鋁惰性擔體運用於化學迴圈燃燒程序 100 5.3 電弧爐收集之集塵灰搭配氧化鋁惰性擔體運用於化學迴圈燃燒程序 101 5.4 未來展望 102 第六章 參考文獻 103

1. 談駿嵩,「國內CCSU 技術研發現況與成本分析暨國內產業具體扶植政策報告」,國立清華大學能源產業科技策略研究中心 (2012)。
2. 陳巾眉、蔡麗伶,「氣候變遷Q&A:溫室氣體會滯留在大氣中多久」,環境資源中心 (2012)。
3. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, “Advances in CO2 Capture Technology ─ The U.S. Department of Energy’s Carbon Sequestration Program,” International Journal of Greenhouse Gas Control, Vol. 2, pp. 9-20 (2008).
4. National Energy Technology Laboratory, “DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap” pp. 41 (2010).
5. H. Fang, L. Haibin, Z. Zengli, “Advancements in Development of Chemical-Looping Combustion: A Review,” International Journal of Chemical Engineering, pp. 1-16 (2009).
6. J. Ada’nez, L. F. de Diego, F. Garcı’a-Labiano, P. Gaya’n, A. Abad, “Selection of Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 18, pp. 371-377 (2004).
7. K. S. Kang, C. H. Kim, K. K. Bae, W. C. Cho, S. H. Kim, C. S. Park, “Oxygen-Carrier Selection and Thermal Analysis of the Chemical-Looping Process for Hydrogen Production,” International Journal of Hydrogen Energy, Vol. 35, pp. 12246-12254 (2010).
8. P. Cho, T. Mattisson, A. Lyngfelt, “Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 83, pp. 1215–1225 (2004).
9. M. M. Hossain, H. I. de Lasa, “Chemical-Looping Combustion (CLC) for Inherent CO2 Separations — A Review,” Chemical Engineering Science, Vol. 63, pp. 4433-4451 (2008).
10. 張添晉、王錫福、王玉瑞,「廢棄物資源化技術暨附加價值提昇研究計畫」,行政院環境保護署(2006)。
11. J-J. Lee, C-I. Lin, H-K. Chen, “Carbothermal Reduction of Zinc Ferrite,” Metallurgical and Materials Transactions B, Vol. 32, pp. 1033-1040 (2000).
12. H. J. Richter, K. F. Knoche, “Reversibility of Combustion Process, Efficiency and Costing,” ACS Symposium Series, Vol. 235, pp. 71-85 (1983).
13. M. Ishida, D. Zheng, T. Akehata, “Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis,” Energy, Vol. 12, pp. 147-154 (1987).
14. M. Ishida, M. Yamamoto, T. Ohba, “Experimental Results of Chemical-Looping Combustion with NiO/NiAl2O4 Particle Circulation at 1200℃,” Energy Conversion and Management, Vol. 43, pp. 1469-1478 (2002).
15. S. A. Scott, J. S. Dennis, A. N. Hayhurst, T. Brown, “In Situ Gasification of a Solid Fuel and CO2 Separation Using Chemical Looping,” AIChE Journal, Vol. 52, pp. 3325-3328 (2006).
16. P. Moldenhauer, M. Ryden, A. Lyngfelt, “Testing of Minerals and Industrial by-Products as Oxygen Carriers for Chemical-Looping Combustion in a Circulating Fluidized-Bed 300W Laboratory Reactor,” Fuel, Vol. 93, pp. 351-363 (2012).
17. 朱敬平,「化學迴圈燃燒技術發展概況簡介」,中興工程季刊第110期,pp. 63-72 (2011)。
18. E. Jerndal, T. Mattisson, A. Lyngfelt, “Thermal Analysis of Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 84, pp. 795-806 (2006).
19. J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L. F. de Diego, “Progress in Chemical-Looping Combustion and Reforming technologies,” Progress in Energy and Combustion Science, Vol. 38, pp. 215-282 (2012).
20. Mineral commodity summaries. U.S. Geological Survey, ISBN 978-1-4113-2666-8 (2010).
21. A. Lyngfelt, B. Leckner, T. Mattisson, “A Fluidized-Bed Combustion Process with Inherent CO2 Separation; Application of Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 56, pp. 3101-3113 (2001).
22. T. Mattisson, Q. Zafar, M. Johansson, A. Lyngfelt, “Chemical-Looping Combustion as a New CO2 Management Technology,” First Regional Symposium on Carbon Management, pp. 22-24 (2006).
23. B. Kronberger, E. Johansson, G. Loffler, T. Mattisson, A. Lyngfelt, H. Hofbauer, “A Two-Compartment Fluidized Bed Reactor for CO2 Capture by Chemical Looping Combustion,” Chemical Engineering Technology, Vol. 27, pp. 1318-1326 (2004).
24. B. Kronberger, A. Lyngfelt, G. Loffler, H. Hofbauer, “Design and Fluid Dynamic Analysis of a Bench-Scale Combustion System with CO2 Separation-Chemical Looping Combustion,” Industrial & Engineering Chemistry Research, Vol. 44, pp. 546-556 (2005).
25. J. Bessieres, A. Bessieres, J. J. Heizmann, “Iron Oxide Reduction Kinetics by Hydrogen,” International Journal of Hydrogen Energy,” Vol. 5, pp. 585-595 (1980).
26. H. Y. Lin, Y. W. Chen, C. Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen,” Thermochimica Acta, Vol. 400, pp. 61-67 (2003).
27. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres,” Applied Catalysis A: General, Vol. 326, PP. 17-27 (2007).
28. A. Pineau, N. Kanari, I. Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part I. Low Temperature Reduction of Hematite,” Thermochimica Acta, Vol. 447, pp. 89-100 (2006).
29. A. Abad, J. Adanez, F. Garcia-Labiano, L. F. de Diego, P. Gayan, J. Celaya, “Mapping of The Range of Operational Conditions for Cu-, Fe- and Ni-Based Oxygen Carriers in Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, pp. 533-549 (2007).
30. T. Song, L-H. Shen, J. Xiao, Z-P. Gao, H-M. Gu, S-W. Zhang, “Characterization of Hematite Oxygen Carrier in Chemical-Looping Combustion at High Reduction Temperature,” Journal of Fuel Chemistry and Technology, Vol. 39, pp. 567-574 (2011).
31. B. Wang, H. Zhao, Y. Zheng, Z. Liu, R. Yan, C. Zheng, “Chemical Looping Combustion of a Chinese Anthracite with Fe2O3-Based and CuO-Based Oxygen Carriers,” Fuel Processing Technology, Vol. 96, pp. 104-115 (2012).
32. A. Abad, F. Garcia-Labiano, L. F. de Diego, P. Gayan, J. Adanez, “Reduction Kinetics of Cu-, Ni- and Fe-Based Oxygen Carriers Using Syngas (CO+H2) for Chemical Looping Combustion,” Energy & Fuels, Vol. 21, pp. 184-153 ( 2007).
33. H. Leion, T. Mattisson, A. Lyngfelt, “The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion,” Fuel, Vol. 86, pp. 1947-1958 (2007).
34. T. Mattisson, M. Johansson, A. Lyngfelt, “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles-Application to Chemical-Looping Combustion,” Energy & Fuels, Vol. 18, pp. 628-637 ( 2004).
35. Q. Zafar, T. Mattisson, B. Gevert, “Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4,” Energy & Fuels, Vol. 20, pp. 34-44 (2006).
36. M. Ryden, M. Arjmand, “Continuous hydrogen production via the steameiron reaction by chemical looping in a circulating fluidized-bed reactor,” International Journal of Hydrogen Energy, Vol. 37, 4843-4854 (2012).
37. Q. Zafar, T. Mattisson, B. Gevert, “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as Support,” Industrial & Engineering Chemistry Research, Vol. 44, pp. 3485-3496 (2005).
38. M. M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, “On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical-Looping Combustion (CLC),” Chemical Engineering Research and Design, Vol. 88, pp. 1505-1514 (2010).
39. 劉祐誠,「以合成氣為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用」,碩士論文,國立台灣科技大學(2011)。
40. D-Q. Chen, L-H. Shen, J. Xiao, T. Song, H-M. Gu, S-W. Zhang, “Experimental Investigation of Hematite Oxygen Carrier Decorated with NiO for Chemical-Looping Combustion of Coal,” Journal of Fuel Chemistry and Technology, Vol. 40, pp. 267-272 (2012).
41. P. Gay’an, L. F. de Diego, F. Garc’ıa-Labiano, J. Ad’anez, A. Abad, and C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 87, pp. 2641–2650 (2008)
42. M. Ryden, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson, “Ilmenite with Addition of NiO as Oxygen Carrier for Chemical-Looping Combustion,” Fuel, Vol. 89, pp. 3523–3533 (2010).
43. Z. Gao, L. Shen, J. Xiao, C. Qing, Q. Song, “Use of Coal as Fuel for Chemical-Looping Combustion with Ni-Based Oxygen Carrier,” Industrial & Engineering Chemistry Research, Vol. 47, pp. 9279-9287 (2008).
44. R. Villa, C. Cristiani, G. Groppi, L. Lietti, P. Forzatti, U. Cornaro, S. Rossini,.”Ni-Based Mixed Oxide Materials for CH4 Oxidation under Redox Cycle Conditions,” Journal of Molecular Catalysis A: Chemical, Vol. 204-205, pp. 637-646 (2003).
45. E. Jerndal, T. Mattisson, A. Lyngfelt, “Investigation of Different NiO/NiAl2O4 Particles as Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 23, pp. 665-676 (2009).
46. L. Shen, J. Wu, Z. Gao, J. Xiao, “Characterization of Chemical Looping Combustion of Coal in a 1 kWth Reactor with a Nickel-Based Oxygen Carrier,” Combustion and Flame, Vol. 157, pp. 934-942 (2010).
47. L. Shen, J. Wu, Z. Gao, J. Xiao, “Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor,” Combustion and Flame, Vol. 156, pp. 1377-1385 (2009).
48. M. Johansson, T. Mattisson, A. Lyngfelt, “Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-Looping Combustor,” Industrial and Engineering Chemistry Research, Vol. 45, pp. 5911-5919 (2006).
49. L. F. de Diego, M. Ortiz, J. Adanez, F. Garcia-Labiano, A. Abad, P. Gayan, “Synthesis Gas Generation by Chemical-Looping Reforming in a Batch Fluidized Bed Reactor Using Ni-Based Oxygen Carriers,” Chemical Engineering Journal, Vol. 144, pp. 289-298 (2008).
50. M. Ishida, H. Jin, T. Okamoto, “A Fundamental Study of a New Kind of Medium Material for Chemical-Looping Combustion,” Energy & Fuels, Vol. 10, pp. 958-963 (1996).
51. J. Adanez, L.F. de Diego, F. Garcia-Labiano, P. Gayan, A. Abad, “Selection of Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 18, pp. 371-377 (2004).
52. T. Mattisson, M. Johansson, A. Lyngfelt, “The Use of NiO as an Oxygen Carrier in Chemical-Looping Combustion,” Fuel, Vol. 85, pp. 736-747 (2006).
53. S. R. Son, S. D. Kim, “Chemical-Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops,” Industrial and Engineering Chemistry Research, Vol. 45, pp. 2689-2696 (2006).
54. H. J. Ryu, S. H. Jo, Y. Park, D. H. Bae, S. Kim, “Long Term Operation Experience in a 50 kWth Chemical Looping Combustor Using Natural Gas and Syngas as Fuels,” 1st International Conference on Chemical Looping (2010).
55. L. F. de Diego, F. Garcia-Labiano, J. Adanez, P. Gayan, A. Abad, B. M. Corbella, J. M. Palacios, “Development of Cu-based oxygen carriers for chemical-looping combustion,” Fuel, Vol. 83, pp. 1749-1757 (2004).
56. M. Arjmand, A-M. Azad, H. Leion, T. Mattisson, A. Lyngfelt, “Evaluation of CuAl2O4 as an Oxygen Carrier in Chemical-Looping Combustion (CLC)”, Industrial & Engineering Chemistry Research, Vol. 51, pp. 13924-13934 (2012).
57. M. Arjmand, “Copper in Chemical-Looping Combustion (CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU),” Department of Chemical and Biological Engineering Chalmers University of Technology (2012).
58. E.R. Stobbe, B.A. de Boer, J.W. Geus, “The Reduction and Oxidation Behaviour of Manganese Oxides,” Catalysis Today, Vol. 47, pp. 161-167 (1999).
59. Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, “Reduction and Oxidation Kinetics of Mn3O4/Mg-ZrO2 Oxygen Carrier Particles for Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, pp. 655-666 (2007).
60. T. Mattisson, A. Jardnas, A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen - Application for Chemical Looping Combustion,” Energy & Fuels, Vol. 17, pp. 643-651 (2003).
61. H. Tian, Q. Guo, J. Chang, “Investigation into Decomposition Behaviour of CaSO4 in Chemical-Looping Combustion,” Energy & Fuels, Vol. 22, pp. 3915-3921 (2008).
62. 劉書銜,「由集塵灰及粗氧化鋅以碳熱還原法合成一維氧化鋅」,碩士論文,國立台北科技大學(2006)。
63. 吳貞瑩,「以Fe2O3/SiO2 載氧體在高溫化學環路燃燒一氧化碳及氫氣之研究」,碩士論文,國立成功大學(2010)。
64. S. Wang, G. Wang, F. Jiang, M. Luo, H. Li, “Chemical Looping Combustion of Coke Oven Gas by Using Fe2O3/CuO with MgAl2O4 as Oxygen Carrier,” Energy & Environmental Science, Vol. 3, pp. 1353-1360 (2010).
65. A. Lambert, C. Delquie, I. Clemencon, E. Comte, V. Lefebvre, J. Rousseau, B. Durand, “Synthesis and Characterization of Bimetallic Fe/Mn Oxides for Chemical Looping Combustion,” Energy Procedia, Vol. 1, pp. 375-381 (2009).
66. H. Jin, T. Okamoto, M. Ishida, “Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO-NiO,” Energy & Fuels, Vol. 12, pp. 1272-1277 (1998).
67. J. Adanez, F. Garcia-Labiano, L. F. de Diego, P. Gayan, J. Celaya, A. Abad, “Nickel-Copper Oxygen Carriers to Reach Zero CO and H2 Emissions in Chemical-Looping Combustion,” Industrial & Engineering Chemistry Research, Vol. 45, pp. 2617-2625 (2006).
68. 馬嘉隆,「化學迴圈程序之複合鐵鎳金屬載氧體製備」,碩士論文,國立台灣科技大學(2011).
69. A. Steinfeld, “Solar Thermochemical Production of Hydrogen – A Review,” Solar Energy, Vol. 78, pp. 603-615 (2005).
70. H. Kaneko, T. Kodama, N. Gokon, Y. Tamaura, K. Lovegrove, A. Luzzi, “Decomposition of Zn-ferrite for O2 Generation by Concentrated Solar Radiation,” Solar Energy, Vol. 76, pp. 317-322 (2004).
71. 徐維懋,「鎳鐵氧化物尖晶石結構載氧體之材料特性與惰性擔體之選用應用於化學迴圈性能評估」,碩士論文,國立台灣科技大學(2012)。
72. B. Wang, R. Yan, H. Zhao, Y. Zheng, Z. Liu, C. Zheng, “Investigation of Chemical Looping Combustion of Coal with CuFe2O4 Oxygen Carrier,” Energy & Fuels, Vol. 25, pp. 3344-3354 (2011).
73. T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia Hematite Oxygen Carrier in Chemical Looping Combustion with Coal,” International Journal of Greenhouse Gas Control, Vol. 11, pp. 326-336 (2012).
74. M. Ryden, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson, “Ilmenite with Addition of NiO as Oxygen Carrier for Chemical-Looping Combustion,” Fuel, Vol. 89, pp. 3523-3533 (2010).
75. H. Leion, A. Lyngfelt, M. Johansson, E. Jerndal, T. Mattisson, “The Use of Ilmenite as an Oxygen Carrier in Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 86, pp. 1017-1026 (2008).
76. L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-Looping Combustion of Biomass in a 10 kW Reactor with Iron Oxide as an Oxygen Carrier,” Energy & Fuels, Vol. 23, pp. 2498-2505 (2009).
77. P. Kolbitsch, J. Bolhar-Nordenkampf, T. Proll, H. Hofbauer, “Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Industrial & Engineering Chemistry Research, Vol. 48, pp. 5542-5547 (2009).
78. 顧洋,邱炳嶔,「能源新技術–化學迴圈程序簡介」,化工技術第19卷第12期,pp. 132-145 (2011)。
79. F. Li, L. Fan, “Clean Coal Conversion Processes-Progress and Challenges,” Energy & Environmental Science, Vol. 1, pp. 248-267 (2008).
80. 林祖儀,「頁岩油真的可以拯救全世界?」,商業週刊,財經新聞儀點通 (2012)。
81. 趙衛武,「美國頁岩氣開發之過去、現在與未來展望」,駐美代表處 (2013)。
82. 張紂微,「全球頁岩氣發展現況與趨勢」,能源知識庫,油氣探勘開發及技術研發計畫管理辦公室 (2012)。
83. 趙文衡,「頁岩氣革命影響全球能源布局」,能源知識庫,台灣經濟研究院 (2012)。
84. C. Georgakis, C. W. Chang, J. Szekely, “A Changing Grain Size Model for Gas-Solid Reactions,” Chemical Engineering Science, Vol. 34, pp. 1072-1075 (1979).
85. M. Ishida, C. Y. Wen, “Comparison of Zone-Reaction Model and Unreacted-Core Shrinking Model in Solid-Gas Reactions - I Isothermal Analysis,” Chemical Engineering Science, Vol. 26, pp. 1031-1041 (1971).
86. H-J. Ryu, D-H. Bae, K-H. Han, S-Y. Lee, G-T. Jin, J-H. Choi, “Oxidation and Reduction Characteristics of Oxygen Carrier Particles and Reaction Kinetics by Unreacted Core Model, Korean Journal of Chemical Engineering, Vol. 18, pp. 831-837 (2001).
87. M. M. Hossain, H. I. de Lasa, “Reduction and Oxidation Kinetics of Co–Ni/Al2O3 Oxygen Carrier Involved in a Chemical-Looping Combustion Cycles,” Chemical Engineering Science, Vol. 65, pp. 98-106 (2010).
88. A. Khawam, D. R. Flanagan, “Basics and Applications of Solid-State Kinetics: A Pharmaceutical Perspective,” Journal of Pharmaceutical Sciences, Vol. 95, pp. 472-498 (2006).
89. K. S. Go, S. R. Son, S. D. Kim, “Reaction Kinetics of Reduction and Oxidation of Metal Oxides for Hydrogen Production,” International Journal of Hydrogen Energy, Vol. 33, pp. 5986-5995 (2008).
90. 鄧茂華,「主導曲線應用在反應動力學上的研究」,行政院國家科學委員會專題研究計劃成果報告,國立台灣大學地質科學系(2001)。
91. 張俊龍,「奈米級氧化鋁粉末θ至α的相轉換活化能研究」,碩士論文,國立成功大學資源工程研究所(2002)。
92. 莊佳哲,向性一,「Ce0.6Zr0.4O2奈米粉末之相分離行為與氧化還原特性」,中華民國陶業研究學會 會刊,國立成功大學資源工程研究所(2012)。
93. M. H. Khedr, “Isothermal Reduction Kinetics at 900-1100℃ of NiFe2O4 Sintered at 1000-1200℃,” Journal of Analytical and Applied Pyrolysis, Vol. 73, pp. 123-129 (2005).
94. M. H. Khedr, “Isothermal Reduction Kinetics of Fe2O3 Mixed with 1-10% Cr2O3 at 1173-1473K,” ISIJ International, Vol. 40, pp. 309-314 (2000).
95. M. H. Khedr, M. H. Abdel-Khalik, “Study on Using Dolomite instead of Limestone as Fluxing Material during Sintering Process and Its Effect on the Reduction and Mechanisms,” Fizkochemiczne Problemy Mineralurgii, Vol. 30, pp. 135-144 (1996).
96. 陳偉聖,周瑋珊,吳俊毅,申永輝,蔡敏行,「台灣煉鋼集塵灰處理現況」,工業污染防制第116期 (2012)。
97. 羅鴻升,「含鋅集塵灰回收鋅、鐵及鉛之研究」,碩士論文,吳鳳技術學院(2009)。
98. 呂維明、戴怡得,「粉粒體粒徑量測技術」,高立圖書有限公司 (2004)。

無法下載圖示 全文公開日期 2018/06/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE