簡易檢索 / 詳目顯示

研究生: Rosabella Ika Yuanita
Rosabella Ika Yuanita
論文名稱: Resource Allocation in LTE-A Network for Machine Type Communications (MTC) over Wi-Fi Spectrum under LAA Framework
Resource Allocation in LTE-A Network for Machine Type Communications (MTC) over Wi-Fi Spectrum under LAA Framework
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 呂政修
Jenq-Shiou Leu
Rong-Hsue Hsiao
Rong-Hsue Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 60
中文關鍵詞: LTE-LAAMachine Type CommunicationInterferenceFBE-based LBTResource Allocation
外文關鍵詞: LTE-LAA, Machine Type Communication, Interference, FBE-based LBT, Resource Allocation
相關次數: 點閱:377下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Heterogeneous Network (HetNet) is a combination networks such as macro cell
and small cell introduced as LTE-A standard in 3GPP Release 10 to provide higher
network capacity and coverage. In multilayer network, macro cell may has much higher
transmit power than small cell, and causes small cell users suffer interference with macro
cell. The cell-edge users of small cell may use the same radio resources with macro cell
users. To cope this interference problem, We propose optimization for resource
allocation using Taguchi’s method in scheduling users to achieve higher LTE-A system
throughput. Resource allocation has an important part in influencing the communication
networks performance to reduces inter-cell interference and improves the system’s
throughput.
Machine to Machine Communication (M2M) or known as Machine Type
Communication (MTC) is a future wireless communication technology will be carried
for industry 4.0. In HetNet, we consider some networks such as small cell, macro cell,
Wi-Fi and MTC or IoT devices operate in different bands, licensed and unlicensed.
Macro cell as the primary cell, while small cell as the secondary cell. 3GPP allows some
networks coexistence in the unlicensed band using Listen Before Talk (LBT) access
mechanism. We consider FBE-based LBT to possible coexistence among LTE-LAA
users, Wi-Fi and IoT devices in our simulation. Through matlab-based simulation, we
evaluate the LTE-A system throughput performance of different frequency band and
environment, and also compare with other optimization algorithm, such as Genetic
Algorithm. As the result, Proportional Fair (PF) is an appropriate scheduler to be used
both in licensed and unlicensed than Round Robin (RR) and Blind Equal Throughput
(BET) because it achieves higher throughput than other scheduler. We also observed that
system throughput of unlicensed band is higher than licensed band.


Heterogeneous Network (HetNet) is a combination networks such as macro cell
and small cell introduced as LTE-A standard in 3GPP Release 10 to provide higher
network capacity and coverage. In multilayer network, macro cell may has much higher
transmit power than small cell, and causes small cell users suffer interference with macro
cell. The cell-edge users of small cell may use the same radio resources with macro cell
users. To cope this interference problem, We propose optimization for resource
allocation using Taguchi’s method in scheduling users to achieve higher LTE-A system
throughput. Resource allocation has an important part in influencing the communication
networks performance to reduces inter-cell interference and improves the system’s
throughput.
Machine to Machine Communication (M2M) or known as Machine Type
Communication (MTC) is a future wireless communication technology will be carried
for industry 4.0. In HetNet, we consider some networks such as small cell, macro cell,
Wi-Fi and MTC or IoT devices operate in different bands, licensed and unlicensed.
Macro cell as the primary cell, while small cell as the secondary cell. 3GPP allows some
networks coexistence in the unlicensed band using Listen Before Talk (LBT) access
mechanism. We consider FBE-based LBT to possible coexistence among LTE-LAA
users, Wi-Fi and IoT devices in our simulation. Through matlab-based simulation, we
evaluate the LTE-A system throughput performance of different frequency band and
environment, and also compare with other optimization algorithm, such as Genetic
Algorithm. As the result, Proportional Fair (PF) is an appropriate scheduler to be used
both in licensed and unlicensed than Round Robin (RR) and Blind Equal Throughput
(BET) because it achieves higher throughput than other scheduler. We also observed that
system throughput of unlicensed band is higher than licensed band.

Cover ................................................................................................................................ i Abstract .......................................................................................................................... iv Acknowledgement ........................................................................................................... v Table of Contents ........................................................................................................... vi List of Figures .............................................................................................................. viii List of Tables ................................................................................................................... x Chapter 1. Introduction .................................................................................................... 1 Chapter 2. Theoretical Background ................................................................................. 4 2.1 LTE-LAA (Licensed Assisted Access) ................................................................. 4 2.1.1 Carrier Aggregation ........................................................................................ 5 2.2 Inter-Network Coexistence .................................................................................... 6 2.2.1 Listen before Talk (LBT)-Based LTE-LAA Mechanism ............................... 6 2.2.2 CSMA/CA Back-off Mechanism .................................................................... 8 2.2.3 Downlink (DL) LAA Categories .................................................................... 9 2.3 Optimization Algorithm ......................................................................................... 9 2.3.1 Taguchi’s Method ........................................................................................... 9 2.3.2 Genetic Algorithm (GA) ............................................................................... 11 Chapter 3. Adopted Algorithm ...................................................................................... 22 3.1 Taguchi’s Method ................................................................................................ 22 3.2 Genetic Algorithm (GA) ...................................................................................... 25 3.2.1 Initialization and Representation .................................................................. 26 3.2.2 Evaluation ..................................................................................................... 26 3.2.3 Roulette-Wheel Selection ............................................................................. 27 3.2.4 One-Point Crossover ...................................................................................... 29 3.2.5 Order Changing Mutation ............................................................................. 29 3.2.6 Termination Criterion .................................................................................... 30 Chapter 4. Simulation Setup, Results and Discussions ................................................. 31 4.1 Propagation and Channel Models ......................................................................... 31 4.1.1 ITU UMa ....................................................................................................... 31 4.1.2 WINNER II ................................................................................................... 32 4.1.3 Cost-231 Hata ............................................................................................... 33 4.1.4 Industrial Indoor Channel ............................................................................. 34 4.2 Resource Scheduling ........................................................................................... 34 4.2.1 Round Robin (RR) ........................................................................................ 35 4.2.2 Blind Equal Throughput (BET) .................................................................... 36 4.2.3 Proportional Fair (PF) ................................................................................... 38 4.3 OFDMA System .................................................................................................. 39 4.3.1 LTE Downlink Frame Structure ................................................................... 39 4.4 Fair Coexistence in Unlicensed Band .................................................................. 40 4.4.1 FBE-based LTE-LAA .................................................................................... 41 4.5 Network Simulation Framework and Parameter Settings ................................... 41 4.6 Simulation Platform ............................................................................................. 43 4.7 Simulation Results and Discussions .................................................................... 43 Chapter 5. Conclusion ................................................................................................... 48 Bibliography .................................................................................................................. 49

[1] E. Starkloff, “The future of 5G: The Internet for everyone and everything,” in
Business 2 Community, Aug. 2015 [Online], Available:
http://www.business2community.com/tech-gadgets/future-5ginternet-everyoneeverything-
01303812#ObtcAoJEKdfCUqZs.97
[2] G. J. Sutton, R. P. Liu, Y. J. Guo, “Harmonising Coexistence of Machine Type
Communications with Wi-Fi Data Traffic Under Frame-Based LBT,” IEEE
Transactions on Communications, vol. 65, no. 9, pp. 4000-4011, September 2017.
[3] T. Potsch, S. N. K. Marwat, Y. Zaki, C. Gorg, “Influence of Future M2M
Communication on the LTE System,” IEEE WMNC, 2013.
[4] Y. Jian, C. Shih, B. Krishnaswamy, R. Sivakumar, “Coexistence of Wi-Fi and
LAA-LTE: Experimental Evaluation, Analysis and Insights,” IEEE ICC –
Workshop on LTE in Unlicensed Bands, 2015.
[5] N. Rupasinghe, I. Guvenc, “Licensed-Assisted Access for WiFi-LTE
Coexistence in the Unlicensed Spectrum,” IEEE Globecom Workshop, 2014.
[6] L. Liu, Y. Jiang, H. Harada, H. Jiang, “Enhanced Listen-Before-Talk Mechanism
for Licensed Assisted Access in Unlicensed Spectrum,” IEEE Wireless
Conference and Networking Conference, 2016.
[7] H. Kwon, J. Jeon, A. Bhokar, Q. Ye, H. Harada, Y. Jiang, L. Liu, S. Nagata, B.
L. Ng, T. Novlan, J. Oh, W. Yi, “Licensed-Assisted Access to Unlicensed
Spectrum in LTE Release 13,” IEEE Communication Magazine, 2016.
[8] N. Miki, M. , Iwamura, K. Y, and H. Ishii, “CA for Bandwidth Extension in LTEAdvanced,”
Technical J., NTT DoCOMO, vol. 12, pp. 10 –19, September 2010.
[9] M. Iwamura, K. Etemad, M.-H. Fong, R. Nory, and R. Love, “Carrier
Aggregation Framework in 3GPP LTE-Advanced,” IEEE Commun. Mag., vol.
48, pp. 60 –67, August 2010.
[10] ETSI EN 301 893 V1.7.1
[11] Wei-Chung Weng, Fan Yang and Atef Elsherbeni, “Electromagnetics and
Antenna Optimization Using Taguchi’s Method:A case study of band pass filter
design”, Synthesis Lectures On Computational Electromagnetics, June 2007.
[12] A. Awada, B. Wegmann, I. Viering, and A. Klein, “A Joint Optimization of
Antenna Parameters in a Cellular Network Using Taguchi’s Method,” in 2011
IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1–5, 2011.
[13] A. Awada, B. Wegmann, I. Viering, and A. Klein, “Optimizing the Radio
Network Parameters of the Long Term Evolution System Using Taguchi’s
Method,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3825–3839, Oct. 2011.
[14] M. Slanina, L. Klozar, S. Hanus, “Practical Measurement of Data Throughput in
LTE Network Depending on Physical Layer Parameters,” The 24th IEEE
International Conference Radioelektronika, 2014.
[15] 3GPP Technical Report TR 36.213, “Physical Layer Procedures v 9.2.0,” June
2010.
[16] C. Cox, An introduction to LTE: LTE, LTE-advanced, SAE and 4G mobile
communications. 2012.
[17] 3GPP Technical Report TR 36.814, “Further Advancements for E-UTRA
Physical Layer Aspects v 9.2.0,” March 2017.
[18] WINNER II Project Work Package 1 (WP1) D1.1.2 v1.2, September 2007.
[19] S. Saunders, “Antennas and Propagation for Wireless Communication Systems,”
Wiley, 2000, pp. 409.
[20] E. Tanghe, W. Joseph, L. Verloock, L. Martens, H. Capoen, K. V. Herwegen, and
W. Vantomme, “The industrial indoor channel: Largescale and temporal fading
at 900, 2400, and 5200 MHz,” IEEE Transactions on Wireless Communications,
July 2008.
[21] S. A. AlQahtani, M. Alhassany, “Comparing Different LTE Scheduling
Schemes,” The 9th IEEE International Wireless Communications and Mobile
Computing, pp. 264-269, 2013.
[22] S. a. Alqahtani and M. Alhassany, “Performance Modeling and Evaluation of
Novel Scheduling Algorithm for LTE Networks,” The IEEE 12th International
Symposium on Network Computing and Applications, pp. 101–105, 2013.

無法下載圖示 全文公開日期 2023/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE