簡易檢索 / 詳目顯示

研究生: 盧柏憲
Po-Hsien Lu
論文名稱: 純水液滴撞擊PVC平板之動態行為研究
A Study of Dynamic Characteristic for Water Drop on PVC Surface
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 林析右
Shi-Yow Lin
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 30
中文關鍵詞: PVC平板液滴撞擊氣泡捕捉區間高速攝影技術
外文關鍵詞: PVC plate, impact of drop, region of entrapped bubble, high speed video camera
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 噴塗程序需將所需液體均勻的覆蓋於被覆蓋物上,而液滴噴塗上去的過程會直接影響被覆蓋物的品質。本研究擬以純水液滴撞擊親水性高分子平板,藉高速攝影技術之便利,來探討、模擬噴塗過程中液滴所表現的潤濕行為。
    液滴碰撞平板後的潤濕行為與液體本身的物理性質(密度、黏度、表面張力等)、撞擊速度、液滴大小、平板物性(粗糙度、親疏水性)皆有關係。本研究以高速攝影機連續拍攝液滴撞擊平板後的液滴形態變化和潤濕行為,另分析液滴撞擊後液滴捕捉氣泡的行為。
    本研究先以不同液滴大小的純水液滴撞擊親水性PVC平板,以We (韋伯數)、Re (雷諾數)、撞擊速度和氣泡面積來分析氣泡捕捉趨勢,再以Dw (潤溼直徑)、H (液滴高度)及CA (接觸角)來分析針號#28、#20及#16的不同大小液滴之氣泡捕捉機制與行為。
    本研究獲得下列資訊:純水液滴撞擊PVC表面,氣泡捕捉之操作條件僅限於在Vi - D0圖上的一個半封閉的區間;氣泡捕捉之撞擊速度的上限和下限,因著液滴直徑D0之增加而下降; 而當固定液滴尺寸時,Re-We 曲線有單調遞增的趨勢;且此單調遞增的關係取決於液滴大小。隨著捕捉到最大氣泡的直徑增加與該氣泡直徑對應之速率成反比。由針號28的液滴來分析,撞擊速度越快的,液滴高度較低,變化也較快;反之,撞擊速度越慢的,液滴高度較高,變化也比較慢,成正相關。捕捉到氣泡的液滴震盪較不受到高度的影響;受到氣泡捕捉的影響,液滴撞擊平板後的液滴高度最低點都正常的液滴高。此外液滴大小直接影響液滴的行為變化,在相近的速度上,直徑越小的液滴,液滴擴張回縮的行為越快;反之液滴直徑越大,行為變化較慢。


    In this work, the wetting phenomenon, drop morphology and bubble-entrapment behavior were studied for water drop impinging on PVC polymer surface. These phenomena during the drop impact are dependent upon the liquid properties (density, viscosity and surface tension), impact velocity, drop size, and solid properties (roughness and surface hydrophobicity). A high speed video camera was utilized for this study and both the images of the side view and 45 degree topic view were recorded continuously.
    Water drops of different sizes were used on the impact study onto the PVC planar surface. The relaxations of drop wetting diameter, drop high and contact angle were recorded for studying the wetting phenomenon from the side view images. The bubble entrapment behavior was investigated from the 45 degree topic view images. Three drop sizes (D0 =2.38, 3.14, and 3.87 mm) were used in this work.
    We observed the following phenomena from this study: (i) , (ii), (iii) and (iv).
    (i)A half closed region on the Vi-D0 plot was identified for the formation of entrapped bubble. The upper and lower boundaries of Vi showed a tendency of decreasing as D0 increases. The entrapped bubble generally resulted in a hemispherical bubble after settling down on PVC surface.
    (ii)The Re-We curve increase depend on the drop size increase.
    (iii) With the analyze of needle 28, diameter of maximum bubble inverse with speed of impact. And impact speed also inverse with drop height.
    (iv) The lowest height of drop with bubble is higher than the normal one. What’s more is drop size affect drop behave directly.

    一、前言 1 二、文獻回顧 2 2.1液滴撞擊的控制參數 2 2.2液滴撞擊的液滴形態的變化 3 2.3液滴撞擊的氣泡捕捉機制 6 三、實驗設備 9 3.1 主要儀器設備 9 3.2 其它儀器設備 11 3.3 儀器校正 11 3.4 實驗材料 12 3.5 實驗條件選定 12 四、實驗結果 14 4.1液滴撞擊親水性材質後捕捉氣泡行為探討 14 4.2液滴撞擊PVC平板後之行為探討 17 4.2.1液滴撞擊PVC平板後之撞擊速度探討-以needle28為例 18 4.2.2液滴撞擊PVC平板後之液滴直徑探討-以needle 28.20.16為例 24 五、結論 27 六、參考文獻 28

    1. WorthinGton AM. On the forms assumed by drops of liquids falling vertically on a horizontal Plate. ProcR Soc London 25:261-271
    2. WorthinGton AM. A second paper on the forms assumed by drops of liquids falling vertically on ahorizontal Plate. ProeRSoeLondon 25:498-503
    3. Alam P, et al. Impact spreading and absorption of Newtonian droplets on topographically irregular porousmaterials. Chem. Eng. Sci., 2007, 62: 3142-3158
    4. Levin Z, Hobbs P V. Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Phil R Soc London A 269:555-585
    5. Hitoshi F, YuShiotani, Albert Y. Tong Three-dimensional numerical analysis of the deformation behaviorof droplets impinging onto a solid substrate. Int. J. Multiphase Flow, 2007, 33: 317–332
    6. Kannan R, Sivakumar D. Droplet impact process on a hydrophobic grooved surface. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 317: 694–704
    7. Manfredo G, Giorgio S. Experimental analysis on the shape and evaporation of water drops on hig effusivity, microfinned surfaces. Exp. Therm Fluid Sci., 2010, 34: 93-103
    8. Li X Y, Ma X H, Lan Z. Behavioral Patterns of Drop Impingement onto Rigid Substrates with a with aWide Range of Wettability and Different Surface Temperature. AlChE J. 2009, 55: 1983-1992
    9. Wachters L H J, Westerling N A J. The heat transfer from a hot wall to impinging water drops in thespheroidal state. Chem. Eng. Sci., 21: 1047-1056
    10. Pan K L. Breakup of a droplet at high velocity impacting a solid surface. Exp. Fluids. 2009: 143-156
    11. Pan K L. Binary droplet collision at high Weber number. Phys. Rev. E: Stat. Phys., Plasmas, Fluids. 2009,80
    12. G.E. Cossali, A. Coghe, M. Marengo, “The impact of a single drop on a wetted solid surface,” Exp. Fluids, 22, 463 (1996)
    13. R. Rioboo, M. Marengo, C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids, 33, 112 (2002)
    14. M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, 8, 650 (1996)
    15. K.P. Gatne, M. A. Jog, R. M. Manglik, “Surfactant-induced modification of low weber number droplet impact dynamics,” Langmuir, 25, 8122 (2009)
    16. M. Aytouna, D. Bartolo, G. Wegdam, D. Bonn, S. Rafai, “Impact dynamics of surfactant laden drops: Dynamic surface tension effects,” Exp. Fluids, 48, 49 (2010)
    17. J. J. Cooper-White, R.C. Crooks, K. Chockalingam, D.V. Boger, “Dynamics of polymer - surfactant complexes: Elongational properties and drop impact behavior,” Ind. Eng. Chem. Res., 41, 6443 (2002)
    18. S.D. Aziz, S. Chandra, “Impact, recoil and splashing of molten metal droplets,” Int. J. Heat Mass Tran., 43, 2841 (2000)
    19. D.A. Gorham, “Anomalous behaviour of high velocity oblique liquid impact,” Wear, 41, 2 (1977)
    20. D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, S. Moulinet, “Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett., 74, 299 (2006)
    21. B.S. Kang, D.H. Lee, “ On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface,” Exp. Fluids., 29, 380 (2000)
    22. R. Rioboo, M. Voue, A. Vaillant, J. De Coninck, “ Drop impact on porous superhydrophobic polymer surfaces,”Langmuir, 24, 14074 (2008)
    23. R.E. Pepper, L. Courbin, “Splashing on elastic membranes: The importance of early-time dynamics,” Phys. Fluids, 20, 8 (2008)
    24. R. Rioboo, M. Voue, H. Adao, J. Conti, A. Vaillant, D. Eveno, D. Coninck, “Drop impact on soft surfaces: Beyond the static contact angles,” Langmuir, 26, 4873 (2010)
    25. R. Rioboo, C. Tropea, “Outcomes from a drop impact on solid surfaces,” Atomization Spray, 11, 155 (2001)
    26. T. Mao, D.C.S. Kuhn, H. Tran, “Spread and rebound of liquid droplets upon impact on flat surfaces,” AIChE J., 43, 2169 (1997)
    27. F.T. Dodge, “The spreading of liquid droplets on solid surfaces,” J. Colloid Interface Sci., 121, 154 (1988)
    28. H. Park, W.W. Carr, J. Zhu, J.F. Morris, “Single drop impaction on a solid surface,” AIChE J., 49, 2461 (2003)
    29. S. Vafaeia, M.Z. Podowskia, “Analysis of the relationship between liquid droplet size and contact angle,” Adv. Colloid Interface Sci., 113, 133 (2005)
    30. C. Ukiwe, D.Y. Kwok, “On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces,” Langmuir, 21, 666 (2005)
    31. H.C. Pumphrey, P.A. Elmore, “Entrainment of bubbles by drop impacts,” J. Fluid Mech., 220, 539 (1990)
    32. P.A. Elmore, G.L. Chahine, H.N. Oguz, “Cavity and flow measurements of reproducible bubble entrainment following drop impacts,” Exp. Fluids, 31, 664 (2001)
    33. Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, M.-A. Drumright-Clarke, D. Richard, C. Clanet, D. Quere., “Pyramidal and toroidal water drops after impact on a solid surface,” J. Fluid Mech., 484, 69 (2003)
    34. S. Chandra, C.T. Avedisian, “Droplet impact on a porous surface,” Proc.: Math. Phys. Sci., 432, 13 (1991)
    35. S.T. Thoroddsen, J. Sakakibara, “Evolution of the fingering pattern of an impacting drop,” Phys. Fluids, 10, 1359 (1998)
    36. D.B. van Dam, C.L. Clerc, “Experimental study of the impact of an ink-jet printed droplet on a solid substrate,” Phys. Fluids, 16, 3403 (2004)
    37. S.T. Thoroddsen, T.G. Etoh, K. Takehara, “The air bubble entrapped under a drop impacting on a solid surface,” J. Fluid Mech., 545, 203 (2005)
    38. J.J. Huang, C. Shu, Y.T. Chew, “Lattice Boltzmann study of bubble entrapment during droplet impact,” Int. J. Numer. Meth. Fluids, 65, 655 (2011)
    39. R. Rioboo, M. Marengo, C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids , 33, 112 (2002)
    40. D. Bartolo, C. Josserand, D. Bonn, “Singular jets and bubbles in drop impact,” Phys. Rev. Lett., 96, 124501 (2006)
    41. L. Chen, Z. Xiao, C.H. Chan, Y. Lee, Z. Li, “A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf,” Appl. Surf. Sci., 257, 8857 (2011)
    42. P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse, “Drop impact upon micro- and nanostructured superhydrophobic surfaces,” Langmuir, 25, 12293 (2009)
    43. M.J. Wang, Y.L. Hung, S.Y. Lin, “The observation of air bubble entrapment for water droplets impinging on parafilm surface,” J. Taiwan Inst. Chem. Eng., 43, 517 (2012)
    44. 洪逸霖,「液滴撞擊平板行為研究-純水液滴在玻璃、paraffin、與芋頭葉面上」,博士論文,國立台灣科技大學,台北 (2011)
    45. 蕭慕柔,「電解剝離法之石墨表面性質探討」,碩士論文,國立中央大學,桃園 (2012)
    46. S.J. Hong, Y.F. Li, M.J. Hsiao, Y.J. Sheng, and H.K. Tsao, “ Anomalous wetting on a superhydrophobic graphite surface,” Appl. Phys. Lett., 100, 121601 (2012)
    47. 三灃塑膠 http://www.sunfung.com.tw/

    無法下載圖示 全文公開日期 2018/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE