簡易檢索 / 詳目顯示

研究生: 呂子暘
Zi-Yang Lu
論文名稱: 以開環歧化聚合法合成含四苯基乙烯與甲氧基取代基之聚對苯乙烯的嵌段共聚物及其性質及鑑定
Synthesis and Characterization of Phenylenevinylene Polymers Containing Tetraphenylethene and Methoxy Units by Ring-Opening Metathesis Polymerization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 王丞浩
Wang, Chen-Hao
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 108
中文關鍵詞: 對苯乙烯開環歧化聚合崁段共聚物形態學
外文關鍵詞: phenylenevinylenes, ring-opening metathesis polymerization, block copolymers, morphology
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究為探討具有四苯基乙烯與甲氧基之兩種取代基之聚對苯乙烯崁段共聚物的合成與性質鑑定。調整具四苯基乙烯之鏈段設計出莫爾體積比為1:1,及3:1等兩種比例之崁段共聚物。為了精準地控制聚合物之分子量、重複單元數以及降低其多分散性,選用聚有較佳之起始及成長反應的第三代格拉布催化劑作為聚合反應之起始劑。
透過凝膠滲透層析法測定聚合物之分子量和多分散性,並且使用核磁共振光譜來鑑定聚合物含有咔唑乙烯及對苯乙烯之重複單元。根據紫外–可見光吸收光譜、光致發光光譜、熱重分析、差式掃描熱分析儀以及循環伏安法探討聚合物之光學、熱性質與電化學性質。透過原子力顯微鏡來探討高分子的形態學,其中最為重要的現象是崁段聚合物的奈米聚集行為。


This thesis described the synthesis and characterization of homopolymers, block copolymers such as phenylenevinylenes containing tetraphenylethene (TPE) and methoxy moieties by ring-opening metathesis polymerization of the corresponding cyclic monomers using the third-generation Grubbs’ catalyst. Two kinds of the block copolymers with different molar ratios are prepared via sequential ring-opening metathesis polymerization. In order to control the molecular weight and the narrow polydispersity, the third-generation Grubbs’ catalyst with high activity and cyclic monomer with high ring strain were chosen.
The polymers molecular weight and polydispersity were determined by gel permeation chromatography. The characterization of the individual blocks including different substituted phenylenevinylenes were confirmed by 1H nuclear magnetic resonance spectroscopy. The optical, thermal and electrochemical properties of the polymers were investigated by UV-Vis absorption spectroscopy, photoluminescence spectroscopy, thermogravimetric analysis, differential scanning calorimeter and cyclic voltammetry. The morphology of polymer thin films was experimented by atomic force microscopy.

List of content Abstract I 中文摘要 II Acknowledgement III Chapter 1 Introduction 1.1 Conjugated polymers 1 1.2 Synthesis of PPVs 3 1.2.1 precursor routes to PPVs 3 1.2.2 Olefin metathesis 5 1.3 Ring opening metathesis polymerization (ROMP) 7 1.3.1 Mechanism of ROMP 7 1.3.2 Catalyst for ROMP 9 1.4 copolymer 12 1.4.1 Random copolymer 13 1.4.2 Alternating copolymer 13 1.4.3 Block copolymer 14 1.5 Self-assembled behavior of polymers 14 1.5.1 Polymerization-induced self-assembly 15 1.5.2 In situ nanoparticlization of conjugated copolymers 16 1.6 Aim of project 17 Chapter 2 Results and Discussion 19 2.1 synthesis and characterization of monomers 20 2.1.1 Synthesis and characterization of 4-(4-(1,2,2-triphenylvinyl)phenyl)-[2.2]paracyclophane-1,9-diene 20 2.1.2 Synthesis and characterization of 4,7-dimethoxy [2.2]paracyclophane-1,9-diene 29 2.2 Synthesis and characterization of polymers 34 2.2.1 Synthesis of homopolymers 34 2.2.2 Synthesis of block copolymers 35 2.2.3 Molecular weight and structure characterization of polymers 36 2.3 Properties of polymers 40 2.3.1 Optical properties 40 2.3.2 Electrochemical properties 50 2.3.3 Thermal properties 55 2.3.4 Morphology study of the polymer films 57 Chapter 3 Conclusion 59 3.1 Conclusion 60 References 61 Chapter 4 Experimental section 65 4.1 General procedures 66 4.2 Synthesis of precursors and monomers 67 4.2.1 Synthesis of 1-(4-bromophenyl)triphenylethene (1) 67 4.2.2 Synthesis of 1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1,2,2-triphenylethylene (2) 68 4.2.3 Synthesis of 2-bromo-1,4-dimethylbenzene (3) 68 4.2.4 Synthesis of 1,4-bisbromomethyl-2-bromobenzene (4) 69 4.2.5 Synthesis of 1,4-bis(bromomethyl)benzene (5) 69 4.2.6 Synthesis of 1,4-benzenedimethanethiol (6) 70 4.2.7 Synthesis of 5-bromo-2,11-dithia[3.3]paracyclophane (7) 70 4.2.8 Synthesis of bis(sulfide) compound (8) 71 4.2.9 Synthesis of bis(sulfoide) compound (9) 71 4.2.10 Synthesis of 4-bromo-[2.2]paracyclophane-1,9-diene (10) 72 4.2.11 Synthesis of 4-(4-(1,2,2-triphenylvinyl)phenyl)-[2.2]paracyclophane-1,9-diene (M1) 73 4.2.12 Synthesis of 1,4-bis(bromomethyl)-2,5-dimethoxybenzene (11) 73 4.2.13 Synthesis of dimethoxy-3,7-dithia-1,5(1,4)-dibenzenacyclooctaphane (12) 74 4.2.14 Synthesis of dimethoxy-1,4(1,4)-dibenzenacyclohexaphane compound with methyl(phenyl)sulfane (1:2) (13) 75 4.2.15 Synthesis of (methylsulfinyl)benzene compound with 12,15-dimethoxy-1,4(1,4)-dibenzenacyclohexaphane (2:1) (14) 75 4.2.16 Synthesis of dimethoxy-1,4(1,4)-dibenzenacyclohexaphane-2,5-diene (M2) 76 4.3 Synthesis of polymers 76 4.3.1 Synthesis of homopolymer P1 76 4.3.2 Synthesis of homopolymer P2 77 4.3.3 Synthesis of homopolymer P3 78 4.3.4 Synthesis of block copolymer P4 79 4.3.5 Synthesis of block copolymer P5 79 Appendix 81

[1] Hideki Shirakawa, Edwin J. Louis, Alan G. Macdiarmid, Chwan K. Chiang, and Alan J. Heeger, Chem. Commun. 1977, 16, 578-580.
[2] Chengliang Wang, Huanli Dong, Wenping Hu, Yunqi Liu, and Daoben Zhu, Chem. Rev. 2012, 112, 2208-2267.
[3] Jianguo Mei, Ying Diao, Anthony L. Appleton, Lei Fang, and Zhenan Bao, J. Am. Chem. Soc. 2013, 13, 5186724-6746.
[4] Sahika Inal, Jonathan Rivnay, Andreea-Otilia Suiu, George G. Malliaras, and Iain McCulloch, Acc. Chem. Res. 2018, 51, 1368-1376.
[5] Abhishek P. Kulkarni, Christopher J. Tonzola, Amit Babel, and Samson A. Jenekhe, Chem. Mater. 2004, 16, 4556-4573.
[6] H.A.M. van Mullekoma, J.A.J.M. Vekemansb, E.E. Havingab, E.W. Meijerb, Mater. Sci. Eng. 2001, 32, 1-40.
[7] Amitabh Banerji, Ann-Kathrin Schönbein, Lena Halbrügge, World Journal of Chemical Education, 2018, 6, 54-62.
[8] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burnst and A. B. Holmest, Nature, 1990, 347, 539-541.
[9] Andrew C. Grimsdale, Khai Leok Chan, Rainer E. Martin, Pawel G. Jokisz, and Andrew B. Holmes, Chemical Reviews, 2009, 109, 897-1091.
[10] Thomas Junkers, Joke Vandenbergh, Peter Adriaensens, Laurence Lutsen and Dirk Vanderzande, Polym. Chem., 2012, 3, 275-285.
[11] H. G. Gilch and W. L. Wheelwright, J. Polym. Sci., 1966, 4, 1337-1349.
[12] Thorsten Schwalm, Jens Wiesecke, Stefan Immel, and Matthias Rehahn, Macromolecules, 2007, 40, 8842-8854.
[13] R. A. Wessling, J. Polym. Sci., Polym. Symp., 1985, 72, 55-66.
[14] Paul L. Burn, Dona1 D. C. Bradley, Richard H. Friend, David A. Halliday, Andrew B. Holmes, Roger W. Jackson and Arno Kraft, J. Chem. Soc., Perkin Trans. 1, 1992, 23, 3225-3231.
[15] Sutthira Sutthasupa, Masashi Shiotsuki and Fumio Sanda, Polymer Journal, 2010, 42, 905-915.
[16] Georgios C. Vougioukalakis and Robert H. Grubbs, Chem. Rev., 2010, 110, 1746-1787.
[17] Lucas Caire da Silva, Giovanni Rojas, Michael D. Schulz, Kenneth B. Wagener, Prog. Polym. Sci., 2017, 69, 79-107.
[18] Travis W. Baughman, Kenneth B. Wagener, Adv. Polym. Sci., 2005, 176, 1-42.
[19] Andrew Hejl, Oren A. Scherman, and Robert H. Grubbs, Macromolecules, 2005, 38, 7214-7218.
[20] Christopher W. Bielaeski and Robert H. Grubbs, Prog. Polym. Sci., 2007, 32, 1-29.
[21] Krzysztof Matyjaszewski and Axel H. E. Müller, Controlled and Living Polymerizations: From Mechanisms to Applications, 2009, page 298.
[22] Guillermo C. Bazan, John H. Oskam, Hyun-Nam Cho, Lee Y. Park, and Richard R. Schrock, J. Am. Chem. Soc., 1991, 113, 6899-6907.
[23] Christopher W. Bielaeski and Robert H. Grubbs, Angem. Chem. Int. Ed., 2009 39, 2903-2906.
[24] Tina M. Trnka And Robert H. Grubbs, Acc. Chem. Res., 2001, 34, 18-29.
[25] Yann Schrodi and Richard L. Pederson, Aldrichimica Acta, 2007, 40, 45-52.
[26] Michael Ulman and Robert H. Grubbs, J. Org. Chem., 1999, 64, 7202-7207.
[27] Jennifer A. Love, Melanie S. Sanford, Michael W. Day and Robert H. Grubbs, J. Am. Chem. Soc., 2003, 125, 10103-10109.
[28] Hao Zhang, Yuan Yao, Ranfeng Sun, Chen Sun, Fang Liu, Mei Guo, Sunan Wang and Kaiyuan You, Catal. Commun. 2014, 49, 43-46.
[29] Dylan J. Walsh, Sii Hong Lau, Michael G. Hyatt and Damien Guironnet, J. Am. Chem. Soc., 2017, 139, 13644-13647.
[30] Anita Leitgeb, Julia Wappel and Christian Slugovc, Polymer, 2010, 51, 2927-2946.
[31] B. W. Swift, and M. Olvera de la Cruz, J. Chern. Phys., 1994, 100, 7744-7748.
[32] Jing Huang and S. Richard Turner, Polymer, 2017, 116, 572-586.
[33] Robert J. Ono, Songsu Kang and Christopher W. Bielawski, Macromolecules, 2012, 45, 2321-2326.
[34] Hongbo Feng, Xinyi Lu, Weiyu Wang, Nam-Goo Kang and Jimmy W. Mays, Polymers, 2017, 9, 494-525.
[35] Antonino Salvatore Aricò, Peter Bruce, Bruno Scrosati, Jean-Marie Tarascon and Walter van Schalkwijk, Nature Materials, 2005, 4, 19-31.
[36] Yiyong Mai and Adi Eisenberg, Chem. Soc. Rev., 2012, 41, 5969-5985.
[37] Adam Blanazs, Steven P. Armes and Anthony J. Ryanm, Macromol. Rapid Commun., 2009, 30, 267-277.
[38] Suyong Shin, Ki-Young Yoon and Tae-Lim Choi, Macromolecules, 2015, 48, 1390-1397.
[39] Suyong Shin, Ming-Long Gu, Chin-Yang Yu, Jongseol Jeon, Eunji Lee and Tae-Lim Choi, J. Am. Chem. Soc., 2018, 140, 475-482.
[40] andrew J. Neel, Margaret J. hilton, Matthew S. Sigman and F. Dean Toste, Nature, 2017, 543, 637-646.
[41] Xinwen Yan, Shaowen Zhang, Pengfei Zhang, Xiaolu Wu, An Liu, Ge Guo, Yuping Dong and Xiaofang Li, Angewandte Chemie, 2018, 57, 8947-8952.
[42] Chin‐Yang Yu, Madeleine Helliwell, James Raftery and Michael L. Turner, Chem. Eur. J., 2011, 17, 6991-6997.
[43] Atiya N. Jordan, Susmita Das, Noureen Siraj, Sergio L. de Rooy, Min Li, Bilal El-Zahab, Lin Chandler, Gary A. Bakerc and Isiah M. Warner, Nanoscale, 2012, 4, 5031-5038.

無法下載圖示 全文公開日期 2025/01/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE