簡易檢索 / 詳目顯示

研究生: TRAN NGUYEN THANH THUY
TRAN - NGUYEN THANH THUY
論文名稱: 以微白金導線為基礎所製備的電流式生物感測器進行丙氨酸轉氨酶之快速、經濟、且具選擇性的偵測
Micro-platinum Wire Based Amperometric Biosensors for Fast, Economic, and Selective Detection of Alanine Aminotransferase
指導教授: 曾婷芝
Tina T.-C. Tseng
口試委員: Ming-Hua Ho
Ming-Hua Ho
Chih-Ning Pao
Chih-Ning Pao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 67
中文關鍵詞: alanine aminotransferasebiosensormicroelectrodeelectrochemicalascorbic aciddopaminestability
外文關鍵詞: alanine aminotransferase, biosensor, microelectrode, electrochemical, ascorbic acid, dopamine, stability
相關次數: 點閱:268下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近電化學技術越來越備受關注,利用追蹤麩胺酸丙酮酸轉氨基酵素在血清裡的濃度上升,來診斷初期的肝臟疾病。而本研究期望製備出製程簡單、經濟效應性佳與高靈敏度的鉑絲線麩胺酸丙酮酸轉氨基酵素生物感測器,藉由比較兩種不同測試方式的麩胺酸丙酮酸轉氨基酵素感測探器並針對其優缺點進行探討。第一種是對電流(I)與麩胺酸丙酮酸轉氨基酵素活性作圖後直接由此圖中的斜率來進行分析(方法1),另一種則是在感測器得到麩胺酸丙酮酸轉氨基酵素訊號後再經過10分鐘才將其電流值與所對應的濃度值記錄下(方法2)。過氧化後的聚吡咯(PPy)薄膜與全氟磺酸薄膜(Nafion®)在本研究中是作為電極表面上的選擇性薄膜,用來抵擋干擾物所造成的訊號,增加感測器的專一性。這兩層薄膜雖然會降低過氧化氫(H2O2)的擴散速率使其較難到達電極表面,導致靈敏度下降,但卻可以有效的抵擋干擾物所產生訊號。由方法1所測試的麩胺酸丙酮酸轉氨基酵素感測器的響應時間為60秒,線性範圍為40-900 U/L,感測極限為15.92 U/L,靈敏度為1.908×10-5 nA/(s·U/L·mm2) (N = 10)。方法2的麩胺酸丙酮酸轉氨基酵素感測器的響應時間約為5秒,線性範圍為10-900 U/L,感測極限為8.48 U/L,靈敏度為0.059 nA/(U/L·mm2) (N = 10)。製備好的探針需要經過長時間操作與長期穩定度測試 (感測器須備存放在-20℃的環境中) (N = 5),同時兩種方式均要測試血清中麩胺酸丙酮酸轉氨基酵素的量來評估感測器的準確性。經過許多測試後可以得出以下結論:由方法1所製備的麩胺酸丙酮酸轉氨基酵素感測探針在高濃度的麩胺酸丙酮酸轉氨基酵素環境下結果較準確,同時也比較簡單來進行分析。相反地,方法2在低濃度的麩胺酸丙酮酸轉氨基酵素環境下較精準,同時具有較好的感測極限與線性範圍。


    Lately, more attention has been drawn to electrochemical techniques for the early diagnosis of liver diseases by tracing the alanine aminotransferase (ALT) level in serum. In this study, a method for fabricating a fast, economic, and selective ALT biosensor based on the micro-platinum wire has been proposed and we compared two different methods for testing the ALT biosensor; –one was established by recording immediate slopes of current responses corresponding to different ALT activities (Method 1) and the other was established by recording 10 minute-delayed current responses corresponding to different ALT activities (Method 2). The permselective overoxidized polypyrrole and Nafion® were used for rejecting interferents. These layers added an additional barrier to lower the flux of H2O2 to the electrode surface; however, current noises from adding the interferents was successfully eliminated. ALT biosensors tested by Method 1 have response time of 60 sec, linear detection range of 40-900 U/L and sensitivity of 1.908×10-5 nA/(s·U/L·mm2) (N = 10) and that tested by Method 2 have response time of ~5 sec, linear detection range of 10-900 U/L, and sensitivity of 0.059 nA/(U/L·mm2) (N = 10). The operational, long-term and storage stabilities of ALT biosensors have been investigated (biosensors were stored at -20oC) (N = 5). ALT from spiked samples (ALT activities: 20, 200, 400, and 900 U/L) were also tested by both methods (N = 5). In general, Method 1 is more convenient to carry out and ALT biosensors tested by Method 1 can detect ALT at high concentration range (>300 U/L) more precisely, whereas ones tested by Method 2 have a better limit of detection, wider detection range and can detect ALT at low concentration range (<300 U/L) more precisely.

    CONTENTS ABSTRACTI 摘要II ACKNOWLEDGEMENTIII CONTENTSIV LIST OF TABLESVI LIST OF FIGURESVII CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW1 1.1. Biosensor overview1 1.1.1. History1 1.1.2. Working princible of biosensors3 1.1.3. Electrochemical device and setup5 1.2. Biosensors for the detection of alanine aminotransferase (ALT)9 1.2.1. Introduction to liver functions and diseases9 1.2.2. Introduction to liver function tests10 1.2.3. Methods for the detection of ALT11 1.2.4. Literature survey for electrochemical ALT biosensors12 1.2.5. Working principle of our ALT biosensors17 CHAPTER 2: EXPERIMENTAL SECTION19 2.1. Materials19 2.2. Instrumentation22 2.3. Experimental methods24 2.3.1. Preparation of chemicals24 2.3.2. Preparation of Ag/AgCl Reference Electrode27 2.3.3. Preparation of ALT Biosensors27 2.3.4. Calibration of ALT Biosensors by Method 129 2.3.5. Calibration of ALT Biosensors by Method 230 2.3.6. Interferent tests32 2.3.7. Stability tests32 2.3.8. Determination of ALT Activities from Spiked Samples32 CHAPTER 3: RESULTS AND DISCUSSION37 3.1. Sensitivity, detection limit, sampling time, and detection range of ALT biosensors tested by Method 137 3.2. Sensitivity, detection limit, response time, and detection range of ALT biosensors tested by Method 238 3.3. Effect of interference40 3.4. Stabilities of ALT biosensors43 3.4.1. Operational stability of ALT biosensors44 3.4.2. Long-term stability of ALT biosensors45 3.4.3. Storage stability of ALT biosensors46 3.5. Comparison of experimental and spiked ALT activities47 CHAPTER 4: CONCLUSION49 CHAPTER 5: FUTURE RECOMMENDATION50 REFERENCE53   LIST OF TABLES Table 1.1. Historical events of biosensor development [6].2 Table 1.2. Classification of biosensors according to the type of transducer [7, 8].4 Table 1.3. Classification of biosensors according to the type of biological recognition system for an electrochemical transducer [7].5 Table 1.4. Classification of electrochemical methods [14].8 Table 1.5. Clinical tests used in diagnosing chronic liver disease [18].10 Table 1.6. State of the art in electrochemical ALT biosensors.14 Table 2.1. The list of chemicals used in the study.20 Table 2.2. The list of instruments used in the study.22 Table 2.3. Concentration table for calibration of Method 1.31 Table 2.4. Concentration table for calibration of Method 2.31 Table 2.5. Concentration table for determination of ALT Activities from spiked samples by Method 2.36 Table 2.6. Concentration table of ALT activities (x) from spiked samples in pre-reaction.36 Table 3.1. Comparison of experimental ALT activities and spiked ALT activities..48 Table 5.1. Comparison results of spiked ALT activities and experimental ALT activities in serum.50   LIST OF FIGURES Figure 1.1. Schematic diagram of a biosensor system [9].3 Figure 1.2. Schematic surface area of an electrode [11].7 Figure 1.3. Variables in electrochemical setup [10].8 Figure 1.4. Potential step amperometric diagram of (a) potential - time curve and (b) current - time curve.9 Figure 1.5. Analytical approaches used to determine the ALT level in liver function tests.12 Figure 1.6. Schematic diagram showing the working principle of the ALT biosensor.17 Figure 2.1. The side view structure of (a) a biosensor, (b) the close-up working electrode tip.28 Figure 2.2. The cross-sectional structure (a) bare Pt wire (b) modified biosensor (c) modified layers (i.e. (1) bare Pt wire, (2) overoxidased ppy, (3) Nafion, and (4) enzyme mobilization layer).29 Figure 2.3. Typical I-t curve when testing ALT biosensors by Method 1.33 Figure 2.4. Typical I-t curve when testing ALT biosensors by Method 2.34 Figure 3.1. (a) ALT current responses corresponding to ALT activities (from 40 U/L, 200 U/L, 400 U/L, to 900 U/L) tested by Method 1 after one day storage at -20oC. The arrows indicate the timing of ALT addition. (b) The calibration curve of ALT biosensors (N = 10) tested by Method 1.38 Figure 3.2. (a) ALT current responses corresponding to ALT activities (from 0 U/L, 10 U/L, 20 U/L, 40 U/L, 70 U/L, 100 U/L, 300 U/L, 600 U/L, to 900 U/L) of biosensors tested by Method 2 after one day storage at 4oC (═ gray line) and -20oC (═ black line). The arrows indicate the timing of ALT additions. (b) Calibration curves of ALT biosensors (N = 10) tested by Method 2 after one day storage in the refrigerator at 4oC () and -20oC ().40 Figure 3.3. The effect of interference tested on bare Pt electrodes and ALT biosensors. (a) Current responses upon sequential additions of 20 μM and 40 μM H2O2 (the injection of H2O2 is indicated by the solid black arrow) and 250 μM and 500 μM AA (the injection of AA is indicated by the dashed black arrow) tested on bare Pt electrodes (═ gray line) and ALT biosensors (═ black line). The inset plot shows lower current range. (b) Current responses upon sequential additions of 20 μM and 40 μM H2O2 (the injection of H2O2 is indicated by the solid black arrow) and 5 μM and 10 μM DA (the injection of DA is indicated by the dashed black arrow) tested on bare Pt electrodes (═ gray line) and ALT biosensors (═ black line). (c) Comparison of sensitivity of H2O2, AA and DA tested on bare Pt electrodes and ALT biosensors (N = 5).42 Figure 3.4. The operational stability of ALT biosensors tested by Method 1 () and Method 2 (). The relative sensitivity of ALT biosensors (N = 5) was plotted vs. number of operation(s).44 Figure 3.5. The long-term stability of ALT biosensors tested by both methods. The relative sensitivity of ALT biosensors (N = 5) was plotted vs. time of measurement.45 Figure 3.6. The storage stability of ALT biosensors tested by both methods. The relative sensitivity of ALT biosensors (N = 5) was plotted vs. time of measurement.47 Figure 3.7. Comparison of experimental ALT activities and spiked ALT activities (ALT activities: 20 U/L, 200 U/L, 400 U/L, and 900 U/L) tested by Method 1 () and Method 2 () (N = 5). The inset plot shows lower activity range.48 Figure 5.1. Typical I-t curve when testing ALT biosensors in serum by Method 1. ALT current responses corresponding to ALT activities of 900 U/L after one day storage at -20oC. The arrows indicate the timing of ALT addition.51

    REFERENCE
    1.Cremer, M., Origin of electromotor properties of tissues, and instructional contribution for polyphasic electrolyte chains. Z. Biol., 1906. 47: p. 562–608.
    2.Haber, F. and Klemensiewicz, Z., Uber elektrische Phasengrenzkräfte. Phys. Chem., 1909. 67: p. 385–431.
    3.Clark, L.C. Jr. and Lyons, C., Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci., 1962. 102: p. 29-45.
    4.Cammann, K., Bio-sensors based on ion-selective electrodes. Fresenius Z. Anal. Chem., 1977. 287: p. 1-9.
    5.Arnold, M.A. and Meyerhoff, M.E., Recent advances in the development and analytical applications of biosensing probes. Crit. Revs. Anal. Chem., 1988. 20: p. 149-196.
    6.Touhami, A., Biosensors and Nanobiosensors: Design and Applications, in Nanomedicine 2014. p. 374-403.
    7.Newman, J.D.; Tigwell, L.J.; Warner, P.J.; and Turner, A.P.F., Biosensors: boldly going into the new millennium. Sensor Review, 2001. 21(4): p. 268 - 271.
    8.Thévenot, D.R.; Toth, K.; Durst, R.A.; and Wilson, G.S., Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 2001. 16(1–2): p. 121-131.
    9.Cammann, K.; Lemke, U.; Rohen, A.; Sander, J.; Wilken, H.; and Winter, B., Chemical Sensors and Biosensors—Principles and Applications. Angewandte Chemie International 1991. 30(5): p. 516–539.
    10.Cunningham, A.J., Introduction to Bioanalytical Sensors 1998, New York: John Wiley & Sons.
    11.Bard, A.J. and Faulkner, L.R., Introduction and overview of electrode processes, in Electrochemical Methods: Fundamentals and Applications, 2nd Edition 2001, John Wiley & Sons. p. 1-43.
    12.Bard, A.J. and Faulkner, L.R., Basic potential step methods, in Electrochemical Methods: Fundamentals and Applications, 2nd Edition 2001, John Wiley & Sons. p. 156-225.
    13.Oldham, K.B. and Myland, J.C., Electrodes, in Fundamentals of electrochemical science 1994, Academic Press. p. 113-141.
    14.Bard, A.J. and Faulkner, L.R., Potential and thermodynamics of cells, in Electrochemical Methods: Fundamentals and Applications, 2nd Edition 2001, John Wiley & Sons. p. 44-86.
    15.Oldham, K.B. and Myland, J.C., Transient voltammetry, in Fundamentals of electrochemical science 1994, Academic Press. p. 395-451.
    16.National Center for Health Statistics. Chronic Liver Disease and Cirrhosis. 2013 [cited 2015 April 8]; at: http://www.cdc.gov/nchs/fastats/liver-disease.htm.
    17.Huang, X.J.; Choi, Y.K.; Im, H.S.; Yarimaga, O.; Yoon, E.; and Kim, H.S., Aspartate Aminotransferase (AST/GOT) and Alanine Aminotransferase (ALT/GPT) Detection Techniques. Sensors, 2006. 6(7): p. 756-782.
    18.Jamal, M.; Worsfold, O.; McCormac, T.; and Demsey, E., A stable and selective electrochemical biosensor for the liver enzyme alanine aminotransferase (ALT). Biosensors and Bioelectronics, 2009. 24: p. 2926-2930.
    19.Heidelbaugh, J.J. and Bruderly, M., Cirrhosis and chronic liver failure: part I. Diagnosis and evaluation. Am Fam Physician, 2006. 74(5): p. 756-762.
    20.Matsuzawa, T. and Katunuma, N., Colorimetric assays for serum alanine transaminase and lactic dehydrogenase using diazonium zinc salt. Analytical Biochemistry, 1966. 17(1): p. 143-153.
    21.Whitaker, J. F., A general colorimetric procedure for the estimation of enzymes which are linked to the NADH/NAD+ system. Clinica Chimica Acta, 1969. 24(1): p. 23-37.
    22.Lippi, U. and Guidi, G., A new colorimetric ultramicromethod for serum glutamicoxalacetic and glutamic-pyruvic transaminase determination. Clinica Chimica Acta, 1970. 28(3): p. 431-437.
    23.Giusti, G.; Ruggiero, G.; and Cacciatore, L., A comparative study of some spectrophotometric and colorimetric procedures for the determination of serum glutamic-oxaloacetic and glutamic-pyruvic transaminase in hepatic diseases. Enzymol. Biol. Clin., 1969. 10(1): p. 17-38.
    24.Rodgerson, D.O. and Osberg, I.M., Sources of error in spectrophotometric measurement of aspartate aminotransferase and alanine aminotransferase Activities in serum. Clinical Chemistry, 1974. 20(1): p. 43-50.
    25.Janasek, D. and Spohn, U., A chemiluminometric FIA procedure for the enzymatic determination of l-aspartate. Sensors and Actuators B: Chemical, 2001. 74(1–3): p. 163-167.
    26.Ohmori, S.; Tanaka, Y.; Ikeda, M.; and Hirota, K., A sensitive determination of α-keto acids by gas-liquid chromatography and its application to the assay of l-glutamate dehydrogenase and aminotransferases. Analytical Biochemistry, 1981. 112(2): p. 204-212.
    27.Rietz, B. and Guilbault, G.G., Fluorimetric assay of serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and α-hydroxybutyrate dehydrogenase by solution and solid surface fluorescent methods. Anal. Chim. Acta, 1975. 77: p. 191-198.
    28.Khampha, W.; Yakovleva, J.; Isarangkul, D.; Wiyakrutta, S.; Meevootisom, V.; and Emnéus, J., Specific detection of L-glutamate in food using flow-injection analysis and enzymatic recycling of substrate. Anal. Chim. Acta, 2004. 518: p. 127-135.
    29.Bonizzoni, M.; Fabbrizzi, L.; Piovani, G.; and Taglietti, A., Fluorescent detection of glutamate with a dicopper(II) polyamine cage. Tetrahedron, 2004. 60: p. 11159-11162.
    30.Peguin, S.; Coulet, P.R.; and Bardeletti, G., Pyruvate oxidase and oxaloacetate decarboxylase enzyme electrodes : Simultaneous Determination of Transaminases with a Two-electrode-based Analyzer. Analytica Chimica Acta, 1989. 222(1): p. 83-93.
    31.Kihara, K.; Yasukawa, E.; and Hirose, S., Sequential Determination of Glutamate oxalacetate transaminase and glutamate pyruvate transaminase activities in serum using an immobilized bienzyme-poly(viny1 chloride) membrane electrode. Anal. Chem, 1984. 56: p. 1876-1880.
    32.Kihara, K.; Yasukawa, E.; Hayashi, M.; and Hirose, S., Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly(vinyl chloride) membrane sensor. Analytica Chimica Acta, 1984. 159(0): p. 81-86.
    33.Cooper, J.M.; McNeil, C.J.; and Spoors, J.A., Amperometric enzyme electrode for the determination of aspartate aminotransferase and alanine aminotransferase in serum. Analytica Chimica Acta, 1991. 245(0): p. 57-62.
    34.Compagnone, D.; Federici, G.; Massoud, R.; Santoro, L.; Anichini, M.; and Palleschi, G., Analysis for transaminases in serum with an amperometric glutamate electrode. Clin Chem., 1992. 38(11): p. 2306-10.
    35.Perales, M.A.; Sener, A.; and Malaisse, W.J., Radioisotopic assay of aspartate and alanine aminotransferase. Clinical Biochemistry, 1992. 25(2): p. 105-107.
    36.Catz, S.D.; Carreras, M.C.; and Poderoso, J.J., Nitric oxide synthase inhibitors decrease human polymorphonuclear leukocyte luminol-dependent chemiluminescence. Free Radical Biology and Medicine, 1995. 19(6): p. 741-748.
    37.Li, X.J.; Nie, Z.H.; Cheng, C.M.; Goodale, A.B.; and Whitesides, G.M., Paper-based electrochemical ELISA, in 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010 (MicroTAS 2010), Verpoorte, S., Editor 2010: Groningen, The Netherlands. p. 1487-1489.
    38.O'Neill, R.D.; Chang, S.C; Lowry, J.P; and McNeil, C.J., Comparisons of platinum, gold, palladium and glassy carbon as electrode materials in the design of biosensors for glutamate. Biosens. Bioelectron., 2004. 19(1521-1528).
    39.Hamdi, N.; Wang, J.J.; and Monbouquette, H.G., Polymer films as permselective coatings for H2O2-sensing electrodes. Journal of Electroanalytical Chemistry, 2005. 581(2): p. 258-264.
    40.Mizutani, F. and Tsuda, K., Determination of glutamate pyruvate transaminase and pyruvate with an amperometric pyruvate oxidase sensor. Analytica Chimica Acta, 1980. 118: p. 65-71.
    41.He, Y.N. and Chen, H.Y., The kinetics-based electrochemical determination of serum glutamate pyruvate transaminase activity with a gold microelectrode. Analytica Chimica Acta, 1997. 353(2–3): p. 319-323.
    42.Upadhyay, S.; Ohgami, N.; Kusakabe, H.; Mizuno, H.; Arima, J.; Tamura, T.; Inagaki, K.; and Suzuki, H., Performance characterization of recombinant l-glutamate oxidase in a micro GOT/GPT sensing system. Sensors and Actuators B: Chemical, 2006. 119(2): p. 570-576.
    43.Song, M.J.; Yun, D.H.; Jin, J.H.; Min, N.K.; and Hong, S.I., Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode. Journal of Bioscience and Bioengineering, 2007. 103(1): p. 32-37.
    44.Ohgami, N.; Upadhyay, S.; Kabata, A.; Morimoto, K.; Kusakabe, H.; and Suzuki, H., Determination of the activities of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase in a microfluidic system. Biosensors and Bioelectronics, 2007. 22(7): p. 1330-1336.
    45.Chang, K.S.; Chang, C.K; Chou, S.F.; and Chen, C.Y., Sequential measurement of aminotransferase activities by amperometric biosensors. Biosensors and Bioelectronics, 2007. 22(12): p. 2914-2920.
    46.Mizutani, F.; Yabuki, S.; and Hirata, Y., Amperometric L-lactate-sensing electrode for serum and milk samples. ANAL. CHIM. ACTA, 1995. 314(3): p. 233–239.
    47.Xuan, G.S.; Oh, S.W.; and Choi, E.Y., Development of an electrochemical immunosensor for alanine aminotransferase. Biosensors and Bioelectronics, 2003. 19(4): p. 365-371.
    48.Paraiso, L.F.; Paula, L.F.; Franco, D.L.; Madurro, J.M.; and Brito-Madurro, A.G., Bioelectrochemical Detection of Alanine Aminotransferase for Molecular Diagnostic of the Liver Disease. Int. J. Electrochem. Sci., 2014. 9: p. 1286-1297.
    49.Song, M.J.; Yun, D.H.; Jin, J.H.; Min, N.K.; and Hong, S.I., Comparison of effective working electrode area on planar and porous silicon substrates for cholesterol biosensor. The Japan Society of Applied Physics, 2006. 45(9A): p. 7197-7202.
    50.Wassum, K.M.; Tolosa, V.M.; Tseng, T.C.; Balleine, B.W.; Monbouquette, H.G.; and Maidment, N.T., Transient extracellular glutamate events in the basolateral amygdala track reward seeking actions. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012. 32(8): p. 2734-2746.
    51.Tseng, T.T. and Monbouquette, H.G., Implantable Microprobe with Arrayed Microsensors for Combined Amperometric Monitoring of the Neurotransmitters, Glutamate and Dopamine. J Electroanal Chem, 2012. 682: p. 141-146.
    52.Reiber, H.; Ruff, M.; and Uhr, M., Ascorbate concentration in human cerebrospinal fluid (CSF) and serum. Intrathecal accumulation and CSF flow rate. Clinica Chimica Acta, 1993. 217(2): p. 163-173.
    53.Xiao, Y.H.; Guo, C.X.; Li, C.M.; Li, Y.B.; Zhang, J.; Xue, R.H.; and Zhang, S., Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film. Analytical Biochemistry, 2007. 371(2): p. 229-237.
    54.Iniouchine, M.Y.; Sibarov, D.A.; Volnova, A.B.; Jimenez-Rivera, C.A.; and Nozdrachev, A.D., Blockers of monoamine transporters influence high dopamine concentration uptake in rat brain slices. Dokl Biol Sci., 2008. 419: p. 80-82.
    55.Wu, K.B.; Fei, J.J.; and Hu, S.S., Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Analytical Biochemistry, 2003. 318(1): p. 100-106.
    56.Jiang, X.H. and Lin, X.Q., Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Analytica Chimica Acta, 2005. 537(1–2): p. 145-151.
    57.Goyal, R.N.; Gupta, V.K.; Oyama, M.; and Bachheti, N., Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: Application in pharmaceutical formulations and biological fluids. Talanta, 2007. 72(3): p. 976-983.
    58.Rubio-Retama, J.; López-Cabarcos, E.; and López-Ruiz, B., High stability amperometric biosensor based on enzyme entrapment in microgels. Talanta, 2005. 68(1): p. 99-107.

    QR CODE