簡易檢索 / 詳目顯示

研究生: 孫采翎
Tsai-ling Sun
論文名稱: 多晶鈦酸鍶的共位晶界與其導電度關聯性之研究
Correlation of coincidence-site lattice grain boundaries and conductivity for polycrystalline strontium titanate
指導教授: 施劭儒
Shao-ju Shih
口試委員: 段維新
Wei-hsing Tuan
顏怡文
Yee-wen Yen
梁元彰
Yuan-chang Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 121
中文關鍵詞: 鈦酸鍶噴霧熱裂解固態氧化物燃料電池共位晶界導電度
外文關鍵詞: Strontium titanate, Spray pyrolysis, Solid oxide fuel cell, Coincidence-site lattice, Conductivity
相關次數: 點閱:255下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

離子與電子混合傳導體的鈦酸鍶是可以取代鎳添加之釔穩定氧化鋯的固態氧化物燃料電池之陽極材料,因其擁有高的化學與熱穩定性,然而鈦酸鍶的離子導電度仍較釔穩定氧化鋯來的低。一般來講,晶界處空間電荷的累積會導致氧空缺的傳導受到阻礙並使離子導電度下降,而根據前人的研究,無法證明低能量的共位晶界Σ3有空間電荷的累積。而目前Σ3晶界難以提升的原因有兩個,一是異常晶粒成長會消耗Σ3晶界,二是陶瓷太脆弱不能滾軋,因此此實驗的目的即在於增加多晶鈦酸鍶的Σ3晶界以提升離子導電度,方法是藉由適合的添加物之作用,在起始粉體的表面形成較多的(111)平面(Σ3晶界)。本實驗以硝酸鍶與異丙醇氧鈦作為前驅物,並添加硝酸與及不同濃度的雙氧水,利用噴霧熱裂解法製備鈦酸鍶粉體,並以X光繞射儀與拉曼光譜鑑定結晶結構,以掃描式電子顯微鏡與穿透式電子顯微鏡觀察粉體的形貌、大小與晶界的形貌,以氮氣吸/脫附儀量測其比表面積,以背向散射電子繞射儀分析晶界資訊,以直流與交流阻抗分析儀量測其導電度。本實驗利用前驅物添加硝酸及雙氧水製備出擁有更多(111)表面的圓弧粉體,發現其Σ3晶界最多且導電度最高。


Strontium titanate (SrTiO3), has been reported as the candidate of solid-oxide-fuel-cell anode materials to substitute the conventional materials of Ni-doped yttria-stabilized zirconia (YSZ) cermets because of its high chemical and thermal stability. However, the ionic conductivity of SrTiO3 is low comparing to YSZ. In general, space charge of grain boundaries (GBs) trapped oxygen ion to result low ionic conductivity. Based on previous studies, there is no evidence of space charge layers in low energy coincidence-site lattice 3 GBs which do not impede the transport of charge. So far, the reasons of low 3 GBs are abnormal grain growth (losing of low energy GBs) and difficult to orientate because ceramic is too brittle. This study attempts to increase the population of 3 GBs in polycrystalline SrTiO3 for high ionic conductivities. The strategy is to form more (111) faces (3 GB plane) on the surface starting powder by chosen suitable precursor additives. Four types of SrTiO3 powders have been synthesized using spray pyrolysis with strontium nitrate, titanium isopropoxide and additives of nitric acid (HNO3) and the mixtures of HNO3 and hydrogen peroxide (H2O2) with different concentrations. The crystalline structures of SrTiO3 particles were characterized by X-ray diffractometer and Raman spectra. The morphology and size of SrTiO3 particles were observed by using scanning electron microscope (SEM) and transmission electron microscope. And, the microstructures of sintered SrTiO3 bulks were observed by using SEM. The GB orientations were characterized by electron back-scattered diffraction (EBSD). The conductivities were measured by electrochemical impedance spectroscopy and DC method. The microstructural results suggest that the SrTiO3 particles prepared from the additive mixture of HNO3 and H2O2 have a rough surface which contains more (111) surfaces than that of the SrTiO3 particles prepared from HNO3 only. In addition, EBSD and DC measurements show that the SrTiO3 from HNO3 and H2O2 (highest population of 3 GBs) exhibit highest conductivity, which supports our microstructural observations.

Abstract i 摘要 iv 致謝 v 目錄 vi 圖目錄 xi 表目錄 xv 第1章 緒論 1 第2章 文獻回顧 2 2.1 固態氧化物燃料電池 2 2.1.1 工作原理 2 2.1.2 陽極材料 5 2.2 鈦酸鍶的性質 10 2.2.1 晶體結構 10 2.2.2 相圖 14 2.2.3 電性 17 2.2.3.1 溫度 18 2.2.3.2 氣氛 19 2.2.3.3 摻雜 21 2.2.3.4 微結構 22 2.3 晶界 25 2.3.1 一般晶界 26 2.3.1.1 表面能 28 2.3.1.2 鈦酸鍶的表面能與晶界形貌 31 2.3.2 共位晶界 35 2.3.2.1 共位晶界的定義 35 2.3.2.2 共位晶界的Σ3晶界 36 2.3.2.3 鈦酸鍶的Σ3晶界 40 2.4 噴霧熱裂解製備鈦酸鍶粉體 43 2.5 研究目的 46 第3章 實驗方法 50 3.1 實驗設計 50 3.2 實驗藥品與儀器 52 3.3 試片製備 53 3.3.1 鈦酸鍶粉體製備 53 3.3.2 壓碇與燒結 54 3.4 粉體與塊材的特性量測 55 3.4.1 X光繞射儀分析 (X-Ray diffraction analysis, XRD) 55 3.4.2 拉曼光譜儀 (Raman spectra) 55 3.4.3 氮氣吸/脫附分析儀 (Brunauer-emmett-teller, BET) 56 3.4.4 場發射掃描式電子顯微鏡 (Field-emission scanning electron microscope, FE-SEM) 56 3.4.5 場發射穿透式電子顯微鏡 (Field-emission transmission electron microscope, FE-TEM) 57 3.4.6 塊材的密度分析 58 3.4.7 背向散射電子繞射 (Electron back-scattered diffraction, EBSD) 60 3.4.7.1 背向散射電子繞射的裝置 60 3.4.7.2 背向散射電子繞射的原理 61 3.4.7.3 背向散射電子繞射儀的試片製備 63 3.4.8 電化學交流阻抗圖譜 (Electrochemical impedance spectroscopy) 65 3.4.8.1 電化學交流阻抗圖譜的原理 65 3.4.8.2 交流與直流阻抗分析儀的試片製備 68 第4章 結果與討論 71 4.1 鈦酸鍶粉體的性質分析 71 4.1.1 X光繞射晶相分析 71 4.1.2 拉曼光譜相分析 73 4.1.3 場發射掃描式電子顯微鏡表面形貌分析與粒徑分布 75 4.1.4 穿透式電子顯微鏡顆粒形貌分析與粒徑分布 80 4.1.5 氮氣吸/脫附分析 83 4.2 鈦酸鍶燒結後塊材的性質分析 85 4.2.1 X光繞射晶相分析 85 4.2.2 阿基米德密度分析 87 4.2.3 拉曼光譜相分析 89 4.2.4 場發射掃描式電子顯微鏡晶粒形貌分析與粒徑分布 91 4.2.5 背向散射電子繞射圖譜晶界分析 93 4.2.6 交流與直流阻抗的電性分析 102 4.3 綜合討論 108 第5章 結論 111 第6章 未來工作 112 第7章 參考文獻 113

[1] P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics 179 (35–36) (2008) 2047-2058.
[2] Y. Guan, Y. Gong, W. Li, J. Gelb, L. Zhang, G. Liu, X. Zhang, X. Song, C. Xia, Y. Xiong, H. Wang, Z. Wu, Y. Tian, Quantitative analysis of micro structural and conductivity evolution of Ni-YSZ anodes during thermal cycling based on nano-computed tomography, Journal of Power Sources 196 (24) (2011) 10601-10605.
[3] C.-H. Lee, C.-H. Lee, H.-Y. Lee, S.M. Oh, Microstructure and anodic properties of Ni/YSZ cermets in solid oxide fuel cells, Solid State Ionics 98 (1–2) (1997) 39-48.
[4] T. Klemenso, C. Chung, P.H. Larsen, M. Mogensen, The mechanism behind redox instability of anodes in high-temperature SOFCs, Journal of The Electrochemical Society 152 (11) (2005) A2186-A2192.
[5] S. McIntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chemical Reviews-Columbus 104 (10) (2004) 4845-4866.
[6] C. Sun, U. Stimming, Recent anode advances in solid oxide fuel cells, Journal of Power Sources 171 (2) (2007) 247-260.
[7] S. Hui, Evaluation of yttrium-doped SrTiO3 as a solid oxide fuel cell anode, in, Vol. Doctor of Philosophy, McMaster University, 2000.
[8] R.J. Gorte, J.M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, Journal of Catalysis 216 (1–2) (2003) 477-486.
[9] M. Brown, S. Primdahl, M. Mogensen, Structure/Performance relations for Ni/yttria‐stabilized zirconia anodes for solid oxide fuel cells, Journal of The Electrochemical Society 147 (2) (2000) 475-485.
[10] C.W. Tanner, K.Z. Fung, A.V. Virkar, The effect of porous composite electrode structure on solid oxide fuel cell performance I. Theoretical analysis, Journal of The Electrochemical Society 144 (1) (1997) 21-30.
[11] J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, S.A. Barnett, Three-dimensional reconstruction of a solid-oxide fuel-cell anode, Nature materials 5 (7) (2006) 541-544.
[12] N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells, Annual Review of Materials Research 33 (1) (2003) 183-213.
[13] Y. Matsuzaki, I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration, Solid State Ionics 132 (3–4) (2000) 261-269.
[14] A. Atkinson, S. Barnett, R.J. Gorte, J. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nature materials 3 (1) (2004) 17-27.
[15] J.W. Fergus, Oxide anode materials for solid oxide fuel cells, Solid State Ionics 177 (17–18) (2006) 1529-1541.
[16] N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Quantum origin of the oxygen storage capability of ceria, Physical Review Letters 89 (16) (2002) 166601.
[17] B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid state electrochemical reactors, Solid State Ionics 28–30, Part 2 (0) (1988) 1547-1552.
[18] M. Mogensen, T. Lindegaard, U.R. Hansen, G. Mogensen, Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2, Journal of The Electrochemical Society 141 (8) (1994) 2122-2128.
[19] W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Materials Science and Engineering: A 362 (1–2) (2003) 228-239.
[20] A. Rachel, S.G. Ebbinghaus, M. Gungerich, P.J. Klar, J. Hanss, A. Weidenkaff, A. Reller, Tantalum and niobium perovskite oxynitrides: Synthesis and analysis of the thermal behaviour, Thermochimica Acta 438 (1–2) (2005) 134-143.
[21] H. Kurokawa, L. Yang, C.P. Jacobson, L.C. De Jonghe, S.J. Visco, Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells, Journal of Power Sources 164 (2) (2007) 510-518.
[22] J.C. Ruiz-Morales, J. Canales-Vazquez, C. Savaniu, D. Marrero-Lopez, W. Zhou, J.T. Irvine, Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation, Nature 439 (7076) (2006) 568-571.
[23] O.A. Marina, N.L. Canfield, J.W. Stevenson, Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate, Solid State Ionics 149 (1–2) (2002) 21-28.
[24] R. Mukundan, E.L. Brosha, F.H. Garzon, Sulfur tolerant anodes for SOFCs, Electrochemical and solid-state letters 7 (1) (2004) A5-A7.
[25] Z. Cheng, S. Zha, M. Liu, Stability of materials as candidates for sulfur-resistant anodes of solid oxide fuel cells, Journal of The Electrochemical Society 153 (7) (2006) A1302-A1309.
[26] J.F. Scott, High-dielectric constant thin films for dynamic random access memories (DRAM), Annual Review of Materials Science 28 (1) (1998) 79-100.
[27] J. Siddiqui, E. Cagin, D. Chen, J.D. Phillips, ZnO thin-film transistors with polycrystalline (Ba,Sr)TiO3 gate insulators, Applied Physics Letters 88 (21) (2006) -.
[28] K. Ueno, W. Sakamoto, T. Yogo, S.-i. Hirano, Processing of novel strontium titanate-based thin-film varistors by chemical solution deposition, Journal of the American Ceramic Society 86 (1) (2003) 99-104.
[29] N. Yamaoka, SrTiO3-based boundary-layer capacitors, American Ceramic Society Bulletin 65 (8) (1986) 1149-1152.
[30] N.Q. Minh, Ceramic fuel cells, Journal of the American Ceramic Society 76 (3) (1993) 563-588.
[31] W. Kingery, H. Bowen, D. Uhlmann, Introduction to ceramics, 1976, New York 788-1016.
[32] P.M. Raccah, J.B. Goodenough, First-order localized-electron ⇆ collective-electron transition in LaCoO3, Physical Review 155 (3) (1967) 932-943.
[33] R.D. Leapman, L.A. Grunes, P.L. Fejes, Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory, Physical Review B 26 (2) (1982) 614-635.
[34] R.O. Bell, G. Rupprecht, Elastic constants of strontium titanate, Physical Review 129 (1) (1963) 90-94.
[35] A. Okazaki, M. Kawaminami, Lattice constant of strontium titanate at low temperatures, Materials Research Bulletin 8 (5) (1973) 545-550.
[36] M.J. Weber, R.R. Allen, Nuclear magnetic resonance study of the phase transition in strontium titanate, The Journal of Chemical Physics 38 (3) (1963) 726-729.
[37] A.C.L.S. Marques, Advanced Si pad detector development and SrTio3 studies by emission channeling and hyperfine interaction experiments, (2009).
[38] R. Roy, Phase diagrams for ceramists, American Ceramic Society, Columbus, Ohio, 1964.
[39] S.-J. Shih, Nanometre-scaled structural studies of strontium titanate by electron microscopy and microanalysis, in, Vol. Doctor of Philosophy, University of Oxford, 2009.
[40] N.H. Chan, R. Sharma, D.M. Smyth, Nonstoichiometry in SrTiO3, Journal of The Electrochemical Society 128 (8) (1981) 1762-1769.
[41] S. Witek, D.M. Smyth, H. Piclup, Variability of the Sr/Ti Ratio in SrTiO3, Journal of the American Ceramic Society 67 (5) (1984) 372-375.
[42] S.N. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure, Acta Crystallographica 11 (1) (1958) 54-55.
[43] C. Noguera, Theoretical investigation of the Ruddlesden-Popper compounds Srn+1TinO3n+1 (n=1-3), Philosophical Magazine Letters 80 (3) (2000) 173-180.
[44] M.A. Mccoy, R.W. Grimes, W.E. Lee, Phase stability and interfacial structures in the SrO–SrTiO3 system, Philosophical Magazine A 75 (3) (1997) 833-846.
[45] M. Paranthaman, A. Aruchamy, G. Aravamudan, G.V.S. Rao, Photoelectrochehical studies on the mixed oxides, SrTiO3, Sr2TiO4 and Sr3Ti2O7, Materials Chemistry and Physics 14 (4) (1986) 349-365.
[46] C.-J. Peng, Y.-M. Chiang, Grain growth in donor-doped SrTiO3, Journal of Materials Research 5 (06) (1990) 1237-1245.
[47] S.-Y. Chung, S.-J.L. Kang, Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3, Acta Materialia 51 (8) (2003) 2345-2354.
[48] S.-Y. Chung, S.-J.L. Kang, Effect of dislocations on grain growth in strontium titanate, Journal of the American Ceramic Society 83 (11) (2000) 2828-2832.
[49] S.G. Cho, P.F. Johnson, Evolution of the microstructure of undoped and Nb-doped SrTiO3, Journal of Materials Science 29 (18) (1994) 4866-4874.
[50] P. Cox, Transition metal oxides: An Introduction to their electronic structure and properties, in, Clarendon Press, Oxford, 1992.
[51] U. Balachandran, N. Eror, Electrical conductivity in lanthanum‐doped strontium titanate, Journal of The Electrochemical Society 129 (5) (1982) 1021-1026.
[52] H. Yamada, G.R. Miller, Point defects in reduced strontium titanate, Journal of Solid State Chemistry 6 (1) (1973) 169-177.
[53] R. Astala, P.D. Bristowe, Ab initio and classical simulations of defects in SrTiO3, Computational Materials Science 22 (1–2) (2001) 81-86.
[54] C.-D. Savaniu, D.N. Miller, J.T.S. Irvine, Scale up and anode development for La-doped SrTiO3 anode-supported SOFCs, Journal of the American Ceramic Society (2013) n/a-n/a.
[55] S. Hui, A. Petric, Electrical properties of yttrium-doped strontium titanate under reducing conditions, Journal of The Electrochemical Society 149 (1) (2002) J1-J10.
[56] S. Hui, A. Petric, Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells, Journal of the European Ceramic Society 22 (9–10) (2002) 1673-1681.
[57] Q. Ma, F. Tietz, Comparison of Y and La-substituted SrTiO3 as the anode materials for SOFCs, Solid State Ionics 225 (0) (2012) 108-112.
[58] X. Li, H. Zhao, F. Gao, N. Chen, N. Xu, La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells, Electrochemistry Communications 10 (10) (2008) 1567-1570.
[59] X. Li, H. Zhao, N. Xu, X. Zhou, C. Zhang, N. Chen, Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells, International Journal of Hydrogen Energy 34 (15) (2009) 6407-6414.
[60] C. Kjolseth, H. Fjeld, O. Prytz, P.I. Dahl, C. Estournes, R. Haugsrud, T. Norby, Space–charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3−δ, Solid State Ionics 181 (5–7) (2010) 268-275.
[61] P. Mondal, A. Klein, W. Jaegermann, H. Hahn, Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia, Solid State Ionics 118 (3–4) (1999) 331-339.
[62] H.L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics 131 (1–2) (2000) 143-157.
[63] M. Hillert, On the theory of normal and abnormal grain growth, Acta Metallurgica 13 (3) (1965) 227-238.
[64] G. Hasson, J.Y. Boos, I. Herbeuval, M. Biscondi, C. Goux, Theoretical and experimental determinations of grain boundary structures and energies: Correlation with various experimental results, Surface Science 31 (0) (1972) 115-137.
[65] H.-K. Kim, W.-S. Ko, H.-J. Lee, S.G. Kim, B.-J. Lee, An identification scheme of grain boundaries and construction of a grain boundary energy database, Scripta Materialia 64 (12) (2011) 1152-1155.
[66] F. Ernst, M.L. Mulvihill, O. Kienzle, M. Ruhle, Preferred grain orientation relationships in sintered perovskite ceramics, Journal of the American Ceramic Society 84 (8) (2001) 1885-1890.
[67] D.M. Saylor, B. El Dasher, T. Sano, G.S. Rohrer, Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters, Journal of the American Ceramic Society 87 (4) (2004) 670-676.
[68] G.S. Rohrer, V. Randle, C.-S. Kim, Y. Hu, Changes in the five-parameter grain boundary character distribution in α-brass brought about by iterative thermomechanical processing, Acta Materialia 54 (17) (2006) 4489-4502.
[69] D. Wolf, Correlation between structure, energy, and ideal cleavage fracture for symmetrical grain boundaries in fcc metals, Journal of Materials Research 5 (08) (1990) 1708-1730.
[70] C. Herring, Some theorems on the free energies of crystal surfaces, Physical Review 82 (1) (1951) 87-93.
[71] T. Sano, D.M. Saylor, G.S. Rohrer, Surface energy anisotropy of SrTiO3 at 1400°C in air, Journal of the American Ceramic Society 86 (11) (2003) 1933-1939.
[72] T. Sano, C.-S. Kim, G.S. Rohrer, Shape evolution of SrTiO3 crystals during coarsening in a titania-rich liquid, Journal of the American Ceramic Society 88 (4) (2005) 993-996.
[73] C. Bae, J.-G. Park, Y.-H. Kim, H. Jeon, Abnormal grain growth of niobium-doped strontium titanate ceramics, Journal of the American Ceramic Society 81 (11) (1998) 3005-3009.
[74] S.B. Lee, W. Sigle, W. Kurtz, M. Ruhle, Temperature dependence of faceting in Σ5(310)[001] grain boundary of SrTiO3, Acta Materialia 51 (4) (2003) 975-981.
[75] S.B. Lee, W. Sigle, M. Ruhle, Faceting behavior of an asymmetric SrTiO3 Σ5 [001] tilt grain boundary close to its defaceting transition, Acta Materialia 51 (15) (2003) 4583-4588.
[76] V. Randle, Twinning-related grain boundary engineering, Acta Materialia 52 (14) (2004) 4067-4081.
[77] M. Kronberg, F. Wilson, Secondary recrystallization in copper, AIME TRANS 185 (1949) 501-514.
[78] D.G. Brandon, B. Ralph, S. Ranganathan, M.S. Wald, A field ion microscope study of atomic configuration at grain boundaries, Acta Metallurgica 12 (7) (1964) 813-821.
[79] D.G. Brandon, The structure of high-angle grain boundaries, Acta Metallurgica 14 (11) (1966) 1479-1484.
[80] Y.-J. You, Investigation of Sr/Ti ratio on microstructure and electrical properties of SrTiO3, in, Vol. Master, National Taiwan University of Science and Technology, 2012.
[81] M.J. Weins, H. Gleiter, B. Chalmers, Computer calculations of the structure and energy of high‐angle grain boundaries, Journal of Applied Physics 42 (7) (1971) 2639-2645.
[82] G. Dimou, K.T. Aust, Relative energies of grain boundaries near a coincidence orientation relationship in high-purity lead, Acta Metallurgica 22 (1) (1974) 27-32.
[83] D.C. Hinz, J.A. Szpunar, Modeling the effect of coincidence site lattice boundaries on grain growth textures, Physical Review B 52 (14) (1995) 9900-9909.
[84] M. Leonhardt, J. Jamnik, J. Maier, In situ monitoring and quantitative analysis of oxygen diffusion through schottky‐barriers in SrTiO3 bicrystals, Electrochemical and solid-state letters 2 (7) (1999) 333-335.
[85] I. Denk, J. Claus, J. Maier, Electrochemical investigations of SrTiO3 boundaries, Journal of The Electrochemical Society 144 (10) (1997) 3526-3536.
[86] R. Waser, The role of grain boundaries in conduction and breakdown of perovskite-type titanates, Ferroelectrics 133 (1) (1992) 109-114.
[87] O. Kienzle, F. Ernst, Effect of shear stress on the atomistic structure of a grain boundary in strontium titanate, Journal of the American Ceramic Society 80 (7) (1997) 1639-1644.
[88] F. Ernst, O. Kienzle, M. Ruhle, Structure and composition of grain boundaries in ceramics, Journal of the European Ceramic Society 19 (6–7) (1999) 665-673.
[89] S.-J. Shih, C. Bishop, D.J.H. Cockayne, Distribution of Σ3 misorientations in polycrystalline strontium titanate, Journal of the European Ceramic Society 29 (14) (2009) 3023-3029.
[90] J.K. Mackenzie, The distribution of rotation axes in a random aggregate of cubic crystals, Acta Metallurgica 12 (2) (1964) 223-225.
[91] H.F. Kraemer, H.F. Johnstone, Collection of aerosol particles in presence of electrostatic fields, Industrial & Engineering Chemistry 47 (12) (1955) 2426-2434.
[92] Y.-J. Chou, Microstructure and bioactivity correlation of one-step synthesized bioactive glass, in, Vol. Master, National Taiwan University of Science and Technology, 2013.
[93] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society 76 (11) (1993) 2707-2726.
[94] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, J Nanopart Res 14 (5) (2012) 1-9.
[95] K.H. Kim, J.K. Park, C.H. Kim, H.D. Park, H. Chang, S.Y. Choi, Synthesis of SrTiO3:Pr,Al by ultrasonic spray pyrolysis, Ceramics International 28 (1) (2002) 29-36.
[96] K. Nonaka, S. Hayashi, K. Okada, N. Otsuka, T. Yano, Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method, Journal of Materials Research 6 (08) (1991) 1750-1756.
[97] B. Yoldas, Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters, Journal of Materials Science 21 (3) (1986) 1087-1092.
[98] K. Nonaka, Y. Onishi, S. Hayashi, K. Okada, T. Yano, K. Uematsu, K. Saito, N. Otsuka, Spray-pyrolytic synthesis of BaTiO3-based fine powders and effect of Ba/Ti ratio and CuO addition on their sinterability, Journal of the Ceramic Society of Japan 98 (8) (1990) 794-800.
[99] S. Shih, P. Herrero, G. Li, C. Chen, S. Lozano-Perez, Three-dimensional structures of mesoporous ceria particles using electron tomography, Microsc Microanal 17 (2011) 54-60.
[100] E. Heifets, R. Eglitis, E. Kotomin, J. Maier, G. Borstel, Ab initio modeling of surface structure for SrTiO 3 perovskite crystals, Physical Review B 64 (23) (2001) 235417.
[101] R.I. Eglitis, Ab Initio Calculations of SrTiO3 (111) Surfaces, in: Y.N. Shunin, A.E. Kiv (Eds.) Nanodevices and Nanomaterials for Ecological Security, Springer Netherlands, 2012, pp. 125-132.
[102] H.P. Klug, L.E. Alexander, X-ray diffraction procedures: for polycrystalline and amorphous materials, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974. 1 (1974).
[103] 黃宏勝, 林麗娟, FE-SEM/CL/EBSD 分析技術簡介, 工業材料雜誌 201 (2003).
[104] http://www.oxford-instruments.com/
[105] J. Fleig, J. Maier, A finite element study on the grain boundary impedance of different microstructures, Journal of The Electrochemical Society 145 (6) (1998) 2081-2089.
[106] J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications, History 1 (2005) 8.
[107] C.-W. Huang, Electrical properties and microstructure of cerium oxide electrolytes produced by two-step sintering, in, Vol. Master, National Taiwan University of Science and Technology, 2013.
[108] S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorny, J. Petzelt, I.M. Reaney, P.L. Wise, Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series, Journal of the European Ceramic Society 23 (14) (2003) 2639-2645.
[109] F. Hardcastle, Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts, Journal of the Arkansas Academy of Science 65 (2011) 43.
[110] F. Yu, G. Gong, Z. Zeng, G. Liu, The measurement of temperature with Raman scattering spectra of polycrystal (SrNO3)2, Guang pu xue yu guang pu fen xi= Guang pu 20 (2) (2000) 210-211.
[111] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, R. Grimes, Advanced inorganic chemistry, Wiley New York, 1988.
[112] Y.L. Du, G. Chen, M.S. Zhang, Investigation of structural phase transition in polycrystalline SrTiO3 thin films by Raman spectroscopy, Solid State Communications 130 (9) (2004) 577-580.
[113] W.G. Nilsen, J.G. Skinner, Raman spectrum of strontium titanate, The Journal of Chemical Physics 48 (5) (1968) 2240-2248.
[114] Q.X. Fu, S.B. Mi, E. Wessel, F. Tietz, Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of the European Ceramic Society 28 (4) (2008) 811-820.
[115] X. Li, H. Zhao, F. Gao, Z. Zhu, N. Chen, W. Shen, Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3−δ as a potential SOFC anode, Solid State Ionics 179 (27–32) (2008) 1588-1592.

QR CODE