簡易檢索 / 詳目顯示

研究生: 陳宥任
Yu-Jen Chen
論文名稱: 熱浸鍍鋁中碳鋼之微弧氧化鍍膜特性分析
Fabrication and Characterization of Micro Arc Oxidation Coatings on Hot-dip Aluminized Medium Carbon Steel
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 王朝正
Chaur-Jeng Wang
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 95
中文關鍵詞: 熱浸鍍鋁微弧氧化鐵影響
外文關鍵詞: hot-dip aluminzing
相關次數: 點閱:363下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討經熱浸鍍鋁之中碳鋼於矽酸鹽類電解液系統,工作電壓為400/-100 V,工作頻率為1000Hz,工作時間20分鐘不同占空比進行微弧氧化處理所形成之氧化膜特性。我們進行微觀結構、硬度表現、相結構及耐腐蝕特性之研究,並將其氧化膜與純鋁於相同電性參數進行微弧氧化生成之氧化膜進行比較分析。
矽酸鹽類系統中,隨著占空比增加,其表面孔洞差異會越來越大,於高占空比時表面甚至會有裂紋產生,而氧化膜厚度亦隨著占空比增加而提升,但於占空比70%之氧化膜厚度又突然下降,因70%時其能量過大,造成氧化膜之裂紋與剝落。氧化膜結構主要為-Al2O3特性繞射峰,而當占空比為30%與50%時,會有Al6Si2O13相產生,因這兩組占空比之鍍層較緻密且厚度較佳,使其成相性較好;當占空比為10%與70%時,會有Al之繞射峰,因其鍍層較薄且有裂紋,才會暴露基材訊號。由實驗結果顯示,熱浸鍍鋁之中碳鋼於矽酸鹽類電解液系統於各占空比進行微弧氧化,以50%之氧化膜最佳,其擁有良好緻密性與厚度(16.93m),且硬度值最高(406HV),並有最高之腐蝕阻抗(3.18•104 Ω•cm2)。
將熱浸鍍鋁中碳鋼進行微弧氧化之氧化膜與純鋁進行微弧氧化之氧化膜進行比較,純鋁氧化膜於各占空比下之氧化膜皆較熱浸鍍鋁試片厚且緻密,經氧化膜元素分析發現,熱浸鍍鋁試片之氧化膜內含有鐵元素,且利用XRD分析與相圖比對,鐵元素有可能以固溶之形式存在於氧化膜當中,超過最大固溶量時會析出於氧化膜邊界,造成氧化膜與純鋁層之間有一層鐵層,使其微弧氧化最終無法繼續,鐵元素於鍍層當中不僅影響了微弧氧化的進行,也降低其硬度、耐腐蝕性與成相性。


In this study, the characteristics of the coating on the hot-dip aluminized middle carbon steel using Micro-Arc oxidation are discussed in silicate system electrolyte. The microstructures, hardness, phase structures, and corrosion resistances are discussed by adjusting duty ratio under constant frequency (1000Hz), working voltage (400V) and working time (20 minutes). Then, compared with coatings on pure aluminum in the same parameters.
With duty ratio increasing, the pores on the surface will become larger and non-homogeneous. And the thickness of the coatings also increase. But the coating of duty ratio 70% is thinner than 30% and 50%. There are some cracks on the surface on the coating of 70% . Because duty ratio 70% provide higher energy, the coating not only cracks but also flaking. The main phase structure of the coatings are -Al2O3. Al6Si2O13 phase are observed in the coatings of duty ratio 30% and 50%. From the formation of Al6Si2O13 phase revealed that dense and thick coatings could get stable phase easily. Duty ratio 10% and 70% can be observed Al substrate diffraction peak because the coatings are thinner than the other two duty ratio and there are some cracks on the surface of the coating in duty ratio 70%. The thickness of the coatings and the cracks have a great influence for the mechanical properties and corrosion behavior. Duty ratio 50% provide the highest thickness (16.93m), the optimum mechanical properties (406 HV) and the most anti-corrosive behavior (3.18•104 Ω•cm2)
Comparing the coatings of hot-dip Aluminized steel with the coatings of pure aluminum using MDO showed that pure aluminum’s coatings in every duty ratio are better the HDA steel’s coatings. From the Line scan analysis, it can be observe that the coating of HDA steel contain iron. Then, iron probably is present in the form of a solid solution of the coating by using XRD analysis and phase diagram of comparison. If the iron more than the maximum amount of
more than will be deposited on the oxide film when the maximum amount of solute boundary layer resulting in a layer of iron oxide and aluminum layer, so that the micro-arc oxidation eventually unable to continue, the iron in the coating which not only affects the micro-arc oxidation, also reduce the hardness, corrosion resistance and resistance to phase.

目錄 摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 研究背景與文獻回顧 3 2.1鋼鐵簡介 3 2.1.1鋼鐵的發展與特性[4] 3 2.3熱浸鍍鋁簡介 3 2.3.1 熱浸鍍鋁發展與應用 3 2.3.2 熱浸鍍法 4 2.3.3 熱浸鍍鋁之鍍層結構與形成機制 4 2.4 微弧氧化法簡介 6 2.4.1 微弧放電工作原理 6 2.4.2 微弧氧化電解液之選用 8 2.4.3 微弧氧化於熱浸鍍鋁材料之應用 9 第三章 實驗方法與步驟 14 3.1 試片材料及製備 14 3.1.1 試片前處理及規格 14 3.2熱浸鍍鋁程序 15 3.3 微弧氧化程序 17 3.3.1 實驗設備 17 3.3.2 微弧氧化實驗參數 18 3.4微弧氧化鍍膜性質分析原理 21 3.4.1 電子顯微鏡觀察與元素之分析 21 3.4.2 X光繞射儀 (X-ray Diffractometer) 22 3.4.3 維氏硬度 23 3.4.4 電化學測試 24 第四章 結果與討論 28 4.1以微弧氧化法於不同占空比鍍製矽酸鹽類氧化膜 30 4.1.1 矽酸鹽類系統不同占空比中Ton-改變之影響 31 4.1.2 矽酸鹽類系統不同氫氧化鈉(NaOH)含量之影響 37 4.1.3 矽酸鹽類系統膜層之微觀結構分析 41 4.1.4 矽酸鹽類系統膜層之晶體結構分析 46 4.1.5 矽酸鹽類系統膜層之硬度分析 48 4.1.6 矽酸鹽類系統膜層之耐腐蝕特性分析 50 4.2熱浸鍍鋁之中碳鋼與純鋁於矽酸鹽類系統進行微弧氧化之比較 52 4.2.1 微觀結構分析與電壓電流之比較 52 4.2.2 微硬度分析之比較 60 4.2.3 耐腐蝕特性分析之比較 62 4.2.4 鍍層元素分析之比較 66 4.2.5 XRD分析之比較 70 4.2.6熱浸鍍鋁中碳鋼進行微弧氧化之反應機制 75 第五章 結論 77 參考文獻 79 附錄Appendix 81 鐵元素析出問題之解決 81 預鍍鎳熱浸鍍鋁 81

參考文獻
[1]王仰舒, “鋼鐵材料”, 1980
[2] “Surface Treatment of Metals and Plastics”, 2004
[3] C.J Wang, T. H Twu, “The Mechanism of NaCl-induced Hot Corrosion of Low Carbon Steel and Effects of Hot-dipped Aluminum Coatings”, Journal of Chinese Corrosion Engineering, Vol1.9, No.4, pp.225-237, 1995
[4]童軍, 碳鋼、低合金鋼鑄件生產及應用實例, 2013
[5] 盧錦堂, “熱浸鍍技術與應用”, 2006
[6]W. Gao, G. Li, “The Development and Application of Hot-Dip Aluminm Coating”, Heat Treatment of Metals, Vol. 6, pp.11-15, 1991
[7] C.J Wang, T. H. Twu, J. W. Lee, “Corrosion Behavior of Low Carbon Steel, SUS310 and Fe-Mn-Al Alloy with Hot-dipped Aluminum Coatings in NaCl-induced Hot Corrosion”, Surface and Coatings Technology, pp.37-43, 2003
[8] W. J. Chenh, C. J. Wang, “Observation of High-Temperature Phase Transformation in the Si-modified Aluminide Coating on Mild Steel Using EBSD”, Journal of Chinese Corrosion Engineering, Vol. 22, No. 4, pp. 287-294, 2008
[9] W. J. Chenh, C. J. Wang, “Observation of Growth Behavior in the Aluminide Mild Steel Using EBSD”, Joumal ofChinese Corrosion Engineering, Vol. 23, No. 2, pp. 117-124, 2009
[10]L.N. Larikov, V. M. Falchenko, D. F. Polishebuk, V. R. Ryabov, A. V. Lonovskays, “Protective Coatings on Metals”, pp.56, 1971
[11]G. L. Yang, L. Xianyi, Y. Bai, H. F. Cui, Z. S. Jin, “The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating.” Journal of Alloys and Compounds. 345,196-200, 2002
[12] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey,“Plasma electrolysis for surface engineering.”Surface and Coatings Technology, 122 73-93, 1999
[13] 劉榮明, 郭鋒, 張妍, 李鵬飛, 內蒙古工業大學學報, 26,101-104, 2007
[14]S. G. Xin, L. X. Song, R. G. Zhao, X. F. Hu, “Properties of Aluminium oxide coating on Aluminium alloy produced by micro-arc oxidation”, Surface and Coating Technology, 2005
[15]Y. Liu, J. Xiu, Y. Gao, Y. Yuan, C. Gao, “Influences of Additive on the Formation and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings on Aluminum Alloy”, Physics Prodecia, Vol. 32, pp107-112, 2012
[16]P. Wang, T. Wu, X. Y. Guo, Y. Peng, “Effects of Current Density on the Properties of Microarc Oxidation Coatings Formed on Aluminum Alloy in Silicate-Na2MoO4 Electrolyte”, Materials Science Forum, Vol. 814, pp398-403, 2015
[17] Z. Wu, Y. Xia, G. Li, F. Xu, “Structure and mechanical properties of ceramic coatings fabricatedby plasma electrolytic oxidation on aluminized steel”, Applied Surface Science, 2007
[18] Y. L. Wong, Z. H. Jiang, X. R. Liu, Z. P. Yao, “Influence of treating frequency on microstructure and properties of Al2O3coating on 304 stainless steel by cathodic plasma electrolytic deposition”, Applied Surface Science, 2009
[19] 田福助編著,“電化學—理論與應用”,高立圖書,171-193。
[20] E. F. Osborn, A. Muan, “Phase Equilibrium Diagrams of Oxide Systems”, 1960

QR CODE