簡易檢索 / 詳目顯示

研究生: 凃文翔
Wen-Xiang Tu
論文名稱: 用於光伏應用之新型Dickson切換式電容多階層逆變器
A Novel Dickson Switched-Capacitor Multilevel Inverter for Photovoltaic Applications
指導教授: 黃仁宏
Jen-Hung Huang
口試委員: 黃仁宏
邱煌仁
陳耀銘
Adrian Ioinovici
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 78
中文關鍵詞: 切換式電容多階層逆變器Dickson倍壓電路
外文關鍵詞: switched-capacitor, multilevel inverter, Dickson voltage multiplier
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

這是首次由此論文提出一基於使用Dickson切換式電容單元之新型切換式電容多階層逆變器,此方法能有效提升輸出電壓,並且具有適當之輸出電壓階層數,以減低開關應力,且具有低輸出總諧波失真。此新提出之解決方法有幾個主要優勢,包含:1) 在各種切換式電容多階層逆變器的優劣勢中取得權衡,於相同電容數量的使用下,相較於串-並式架構,本方法擁有較佳的升壓能力以及較高的輸出電壓階層數;相較於Fibonacci和Exponential架構,本方法所需的功率開關耐壓較低,2) 藉切換式電容單元裡電容每兩階段充電,可確保較小的電容電壓漣波及容值,3) 非脈動輸入電流,適用於太陽能電池應用,以及4) 藉輸出全橋開關操作在零電壓或零電流切換,即零切換損耗。不僅如此,此提出之電路架構具有電容電壓自我平衡能力,因此無需外加電壓平衡電路,且無需使用磁性元件,故具有小體積、高功率密度及高效率等優勢。在本論文裡,針對切換式電容容值、開關元件耐壓、調變方法、功率損耗及效率等進行深入的分析與計算,最終在模擬和實驗中驗證其可行性。在實作中,即是以太陽能板操作在最大功率點電壓為24 V的情況下,成功實現輸出電壓有效值110 Vrms、輸出頻率60 Hz,以及在輸出額定功率為100 W的情況下,此逆變器的效率為96.15 %以及輸出總諧波失真為6.77 %。


It is the first time this research proposes a switched-capacitor multilevel inverter (SCMLI) based on a Dickson switched-capacitor (SC) cell. By this proposed solution, the output voltage will be boosted and a moderate large number of voltage level can be achieved, thus reducing the switch voltage stress and the total harmonic distortion (THD). The advantages of this proposed solution include: 1) a trade-off between the advantages and disadvantages of the available series-parallel, Fibonacci and Exponential solutions, i.e. a moderate large number of levels and a relatively high boost factor with the same number of capacitors compared with series-parallel solution; a relatively low voltage stress compared with Fibonacci and Exponential solutions, 2) charge of capacitors in the SC cell every two stages, assuring in such a way a small capacitor voltage ripple and thus smaller capacitors, 3) non-pulsating input current as required for applications powered by solar cell, 4) switching of the large output H-bridge switches under zero-voltage switching (ZVS) or zero-current switching (ZCS), implying zero-switching losses for those MOSFETs. This proposed inverter also has advantages of small size, high power density, and high efficiency with voltage self-balancing ability and re-quiring no any magnetic devices, such as inductors or transformers. The calculations for capacitance, voltage stress, and power loss, as well as the modulation, are included. Analysis, simulation, and experimental verifica-tion for this proposed inverter are presented to illustrate proof of con-cept. Finally, a hardware prototype of this proposed inverter supplied by a 24 V – the MPPT voltage from a PV panel, providing a 110 Vrms and 60 Hz sinusoidal voltage is realized. The inverter has an efficiency of 96.15 % and a THD of 6.77 % at load of 100 W.

摘要 i Abstract ii 致謝 iv 目錄 v 圖索引 vii 表索引 ix 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.2.1 串-並式切換式電容逆變器 4 1.2.2 串級型切換式電容逆變器 7 1.2.3 Fibonacci和Exponential切換式電容逆變器 9 1.3 論文架構 12 第二章 Dickson切換式電容多階層逆變器 13 2.1 工作原理 14 2.2 電容電壓漣波分析 23 2.3 元件耐壓分析 24 2.4 損耗及效率分析 25 2.4.1 電容漣波損失 26 2.4.2 切換損失 26 2.4.3 導通損失 28 2.4.4 效率研究 29 第三章 調變方法 30 3.1 介紹 30 3.2 多載波脈波寬度調變法 31 3.3 數位控制設計 36 第四章 模擬結果與討論 39 4.1 電容充放電運作驗證 40 4.2 開關元件耐壓驗證 42 4.3 輸出電壓及電流驗證 44 第五章 實驗結果與討論 46 5.1 電容設計 46 5.2 二極體設計 46 5.3 功率開關設計 47 5.4 驅動電路設計 48 5.5 實驗測量結果 53 5.5.1 電容充放電運作驗證 54 5.5.2 開關元件耐壓驗證 55 5.5.3 輸出電壓及電流驗證 58 5.5.4 效率與THD分析與量測 59 第六章 結論與未來展望 62 6.1 結論 62 6.2 未來展望 63 參考文獻 64

[1]O. C. Mak and A. Ioinovici, "Switched-capacitor inverter with high power density and enhanced regulation capability," IEEE Trans. on Cir-cuits and Systems I, vol. 45, no. 4, April 1998.
[2]B. Axelrod, Y. Berkovich, and A. Ioinovici, "A cascade boost-switched-capacitor-converter – two level inverter with an optimized multilevel output waveform," IEEE Trans. Circuits Syst. I, vol. 52, no. 12, Dec. 2005.
[3]M. S. W. Chan and K. T. Chau, "A new switched-capacitor boost-multilevel inverter using partial charg-ing," IEEE Trans. Circuits Syst. II, vol. 54, no. 12, Dec. 2007
[4] Y. Hinago and H. Koizumi, "A switched-capacitor inverter using se-ries/parallel conversion with inductive load," IEEE Trans. Ind. Electron., vol. 59, no. 2, Feb. 2012.
[5] Y. Ye, K. W. E. Cheng, J. Liu and K. Ding, "A step-up switched-capacitor multilevel inverter with self-voltage balancing," IEEE Trans. Ind. Electron., vol. 61, no. 12, Dec. 2014.
[6] Taghvaie, Amir, Jafar Adabi, and Mohammad Rezanejad. "A self-balanced step-up multilevel inverter based on switched-capacitor structure." IEEE Transactions on Power Electronics 33, no. 1, 2017
[7] J. Liu, Cheng, K. W. E. Cheng and Y. Ye, "A cascaded multilevel in-verter based on switched-capacitor for high-frequency ac power distribu-tion system," IEEE Trans. Power Electron., vol. 29, no. 8, Aug. 2014.
[8] S. R. Raman, K. W. E. Cheng and Y. Ye, "Multi-input switched-capacitor multilevel inverter for high-frequency ac power dis-tribution," IEEE Trans. Power Electron., vol. 33, no. 7, 2018.
[9] E. Babaei and S. S. Gowgani, "Hybrid multilevel inverter using switched capacitor units," IEEE Trans. Ind. Electron., vol. 61, no. 9, Sept. 2014.
[10] E. Zamiri, N. Vosoughi, S. H. Hosseini, R. Barzegarkhoo and M. Sabahi, "A new cascaded switched-capacitor multilevel inverter based on improved series–parallel conversion with less number of components, " IEEE Trans. Ind. Electron., vol. 63, no. 6, Jun. 2016.
[11] R. Barzegarkhoo, H. M. Kojabadi, E. Zamiry, N. Vosoughi and L. Chang, "Generalized structure for a single phase switched-capacitor mul-tilevel inverter using a new multiple dc link producer with reduced number of switches, " IEEE Trans. Power Electron., vol. 31, no. 8, Aug. 2016.
[12] R. Shalchi Alishah, S. H. Hosseini, E. Babaei, M. Sabahi and G. B. Gharehpetian, "New High Step-Up Multilevel Converter Topology With Self-Voltage Balancing Ability and Its Optimization Analysis," in IEEE Transactions on Industrial Electronics, vol. 64, no. 9, Sept. 2017
[13] Eguchi, K., Y. Zhang, K. Abe, I. Oota, S. Terada and Hirofumi Sasaki, "A Fibonacci Switched-Capacitor DC-AC Inverter for Small Power Ap-plications,"2014.
[14] A. Taghvaie, J. Adabi and M. Rezanejad, “Circuit topology and op-eration of a step-up multilevel inverter with a single dc source,” IEEE Trans. Ind. Electron., vol. 63, no. 11, Nov. 2016.
[15] M. Saeedian, M. E. Adabi, S. M. Hosseini, J. Adabi, and E. Pour-esmaeil, "A Novel Step-Up Single Source Multilevel Inverter: Topology, Operating Principle, and Modulation," IEEE Trans. Power Electron., vol. 34, no. 4, April 2019.
[16] M. F. Talooki, M. Rezanejad, R. Khosravi and E. Samadaei, "A Novel High Step-Up Switched-Capacitor Multilevel Inverter With Self-Voltage Balancing," in IEEE Transactions on Power Electronics, vol. 36, no. 4, April 2021
[17] On-Cheong Mak, Yue-Chung Wong and A. Ioinovici, "Step-up DC power supply based on a switched-capacitor circuit," in IEEE Transactions on Industrial Electronics, vol. 42, no. 1, Feb. 1995
[18] M. S. Makowski and D. Maksimovic, "Performance limits of switched-capacitor DC-DC converters," Proceedings of PESC '95 - Power Electronics Specialist Conference, 1995
[19] J. F. Dickson, "On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique," in IEEE Journal of Solid-State Circuits, vol. 11, no. 3, June 1976
[20] A. Ioinovici, Power electronics and energy conversion systems, Wiley Inc., UK, 2013.
[21] Texas Instruments Inc., "TMS320x2803x Piccolo Technical Refer-ence Manual, " Datasheet, December 2018.
[22] Silicon Labs Inc., " AN486: High-Side Bootstrap Design Using ISODrivers in Power Delivery Systems, " Datasheet, January 2020.

無法下載圖示 全文公開日期 2031/10/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE