簡易檢索 / 詳目顯示

研究生: 郭炫德
Hsuan-Te Kuo
論文名稱: 數位孿生系統之多目標生產批量優化模式
Multi-objective Optimal Processing Batch Size Configuration in Digital Twin Model
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 林久翔
Chiu-Hsiang Lin
王偉驎
Wei-Ling Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 61
中文關鍵詞: 模擬最佳化數位孿生多目標規畫多目標基因演算法
外文關鍵詞: simulation-based optimization, multi-objective problem, multi-objective genetic algorithm, digital twin
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在智慧工廠數位孿生技術的應用下,使用生產模擬系統工具已成為趨勢,將生產過程中的訂單量、產品、設備等實體生產物件,轉換成可控制的參數,從生產管理的角度延伸,如何快速反映生產狀況並執行產線優化,是許多企業共同發展的方向。本研究針對半導體封裝製程探討生產批量組合,以機台稼動率與產品流程時間為目標式,採用非支配排序基因演算法與田口方法,尋求最佳生產批量組合,為使生產模型更符合現況,導入多目標、多產品、流水線製程與批量生產等要素建立生產模擬模型,透過柏拉圖前緣解,在衝突目標間,提出適當的方案。另採多目標問題績效指標,比較兩者方法產生出的柏拉圖前緣解,發現非支配排序基因演算法搜索到的前緣解優於田口方法。本研究期望模擬最佳化結果提供給生產管理者快速且符合現況的資訊,輔以模擬可視化技術控管工廠,提升作業效率。


    With the application of digital twin in smart factory, using a production simulation system has become the trend. For instance, orders, products and equipment can be converted into controllable parameter in the process of production. Moreover, in the extension of product management perspective, reflecting production condition immediately as well as executing production optimization are the main goals for many enterprises. This study focuses on discussing the configuration of processing batch size in IC-packaging industry. The objective function are utilization of machines and production flow time. The research method is non-dominated sorting genetic algorithm II and Taguchi method. To make a process model fits current situation, importing elements such as multi-objectives, multiple products, flow-line production and batch production in the simulation model, and proposing solutions through the Pareto - optimal front among goal conflict. The performance metrics of multi-objective problem is used to compare two Pareto-optimal solutions. Therefore, this research found Pareto-optimal front of non-dominated sorting genetic algorithm was superior to Taguchi method. This study expect to simulation-based optimization result to provide product manager immediate and suitable status information, supplemented by simulation visualization techniques to control the production and improve operational efficiency.

    ABSTRACT I 摘要 II 致謝 III List of Table VI List of Figure VII CHAPTER 1. INTRODUCTION 1 1.1 Research background and motivation 1 1.2 Research objective 1 1.3 Research organization 2 CHAPTER 2. LITERATURE REVIEW 3 2.1 Multi-objective problem 3 2.2 Simulation-based optimization 4 2.3 Multi-objective Genetic Algorithm 6 2.4 Digital twin 7 2.5 Summary 9 CHAPTER 3. MODEL DEVELPOMENT 10 3.1 Problem description 10 3.2 Simulation scenario description 14 3.3 Optimization module 17 3.4 Performance metrics 21 3.4.1 Generational Distance (GD) 22 3.4.2 Spacing (SP) 22 3.4.3 Overall Pareto Spread (OS) 23 3.4.4 Hypervolume (HV) 24 CHAPTER 4. EXPERIMENT AND RESULT 25 4.1 Parameter setting 25 4.2 Optimal algorithm factor 26 4.3 Experimental result and statistical analysis 30 4.3.1 Taguchi method 30 4.3.2 Comparison of different order arrangement by NSGA-II 34 4.3.3 Comparison of Taguchi method and NSGA-II 37 CHAPTER 5. CONCLUSION 40 5.1 Conclusion 40 5.2 Future research 41 REFERENCE 42 APPENDIX 45

    Athreya, S., & Venkatesh, Y. (2012). Application of Taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation. Int. Refereed J. Eng. Sci, 1(3), 13-19.
    Bielefeldt, B., Hochhalter, J., & Hartl, D. (2015). Computationally efficient analysis of SMA sensory particles embedded in complex aerostructures using a substructure approach. Paper presented at the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.
    Carson, Y., & Maria, A. (1997). Simulation optimization: methods and applications. Paper presented at the Proceedings of the 29th conference on Winter simulation.
    Chen, J. C., Chen, T.-L., Pratama, B. R., & Tu, Q.-F. (2016). Capacity planning with ant colony optimization for TFT-LCD array manufacturing. Journal of Intelligent Manufacturing, 1-19.
    Dallery, Y., & Gershwin, S. B. (1992). Manufacturing flow line systems: a review of models and analytical results. Queueing systems, 12(1-2), 3-94.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
    Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization. Paper presented at the Icga.
    Glaessgen, E., & Stargel, D. (2012). The digital twin paradigm for future NASA and US Air Force vehicles. Paper presented at the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA.
    Goyal, K. K., Jain, P., & Jain, M. (2012). Optimal configuration selection for reconfigurable manufacturing system using NSGA II and TOPSIS. International Journal of Production Research, 50(15), 4175-4191.
    Hochhalter, J., Leser, W. P., Newman, J. A., Gupta, V. K., Yamakov, V., Cornell, S. R., . . . Heber, G. (2014). Coupling Damage-Sensing Particles to the Digitial Twin Concept.
    Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press.
    Jiang, S., Ong, Y.-S., Zhang, J., & Feng, L. (2014). Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE transactions on cybernetics, 44(12), 2391-2404.
    Li, C.-H., & Tsai, M.-J. (2009). Multi-objective optimization of laser cutting for flash memory modules with special shapes using grey relational analysis. Optics & Laser Technology, 41(5), 634-642.
    Li, X., Yalaoui, F., Amodeo, L., & Chehade, H. (2012). Metaheuristics and exact methods to solve a multiobjective parallel machines scheduling problem. Journal of Intelligent Manufacturing, 23(4), 1179-1194.
    Lin, R.-C., Sir, M. Y., & Pasupathy, K. S. (2013). Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services. Omega, 41(5), 881-892.
    Mok, P. (2009). A decision support system for the production control of a semiconductor packaging assembly line. Expert Systems with Applications, 36(3), 4423-4430.
    Okabe, T., Jin, Y., & Sendhoff, B. (2003). A critical survey of performance indices for multi-objective optimisation. Paper presented at the Evolutionary Computation, 2003. CEC'03. The 2003 Congress on.
    Pasandideh, S. H. R., Niaki, S. T. A., & Sharafzadeh, S. (2013). Optimizing a bi-objective multi-product EPQ model with defective items, rework and limited orders: NSGA-II and MOPSO algorithms. Journal of Manufacturing Systems, 32(4), 764-770.
    Perkgoz, C., Azaron, A., Katagiri, H., Kato, K., & Sakawa, M. (2007). A multi-objective lead time control problem in multi-stage assembly systems using genetic algorithms. European Journal of Operational Research, 180(1), 292-308.
    Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE transactions on evolutionary computation, 13(2), 398-417.
    Rabiee, M., Zandieh, M., & Ramezani, P. (2012). Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches. International Journal of Production Research, 50(24), 7327-7342.
    Selvaraj, D. P., Chandramohan, P., & Mohanraj, M. (2014). Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method. Measurement, 49, 205-215.
    Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
    Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3563-3576.
    Tuegel, E. J., Ingraffea, A. R., Eason, T. G., & Spottswood, S. M. (2011). Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 2011.
    Vachálek, J., Bartalský, L., Rovný, O., Šišmišová, D., Morháč, M., & Lokšík, M. (2017). The digital twin of an industrial production line within the industry 4.0 concept. Paper presented at the Process Control (PC), 2017 21st International Conference on.
    Weigert, G., Klemmt, A., & Horn, S. (2009). Design and validation of heuristic algorithms for simulation-based scheduling of a semiconductor backend facility. International Journal of Production Research, 47(8), 2165-2184.
    Yusoff, Y., Ngadiman, M. S., & Zain, A. M. (2011). Overview of NSGA-II for optimizing machining process parameters. Procedia Engineering, 15, 3978-3983.

    QR CODE