簡易檢索 / 詳目顯示

研究生: 洪敏森
Min-Sen Hung
論文名稱: 鞋底緩衝模組內 波型彈簧之分析與設計
The Analysis and Design of Wave Springs for Footwear
指導教授: 鄭正元
Jeng-Ywan Jeng
徐茂濱
Mau-Pin Hsu
口試委員: 林上智
徐茂濱
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 100
中文關鍵詞: 鞋底結構非線性剛性波型彈簧緩衝儲能
外文關鍵詞: Shoes Module, Non-linear Stiffness, Wave Spring, Cushion, Stored Energy
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究透過力學分析,設計一款具有緩衝與儲能特性之鞋底彈性結構,可減緩穿戴者下肢活動時的不適感,並提供足夠的回彈能量協助下肢推蹬,減輕下肢肌力之負擔。
本研究所設計之鞋底彈性結構,具有非線性剛性的特質,在結構受壓的前期,較小的剛性可以消除衝擊力;而受壓中期的線性剛性,使彈性結構可儲存更多的能量做為回彈助力;受壓後期非線性增加的剛性,則可以消除原有普通鞋觸底時的不適感。
本研究引入步態分析與人體數學模型後,以此訂立彈性結構之性能目標。研究中以電腦輔助設計與有限元素法驗證理論結果,再將波型彈簧的各項幾何參數與彈簧性能的關係列出,並說明其設計方法。最後以合乎實例之條件設計波型彈簧,得到具備緩衝能力(初始剛性114.4 N/mm),與可儲存約81 %之步行落差位能(現有之波型彈簧鞋Spira僅約7.4 %),與54 %之跑步落差位能之設計。


Base on mechanical analysis, this study designs an elastic structure with cushioning and energy storage ability, which can relieve the discomfort during lower limb activities, and provide rebounding energy to assist the user at the same time.
The elastic structure of the footwear designed in this research has the characteristics of Nonlinear rigidity. In the early stage of the compression of the structure, the smaller rigidity can eliminate the impact force; the linear rigidity in the middle stage of compression enables to store more energy; the Non-linear rigidity in the later stage of compression can eliminate the discomfort when the sole is fully compressed.
This study uses gait analysis and a mathematical model of the human body to define the geometric and performance goals of elastic structures. The performance differences of the coil spring and the wave spring are theoretically discussed, and supported by computer-aided design and the finite element method results. Also, the relationship between the geometric of the wave spring and the performance is listed. Finally, an example is designed by a realistic conditions with cushioning ability (initial rigidity is about 114 N/mm), which can store about 81% of the walking potential energy (the wave spring shoe Spira is only about 7.4%) and 54% of the running potential energy.

摘要 ii ABSTRACT iii 誌謝 iv 目錄 v 圖目錄 viii 表索引 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 本文架構 10 第二章 彈性結構應用理論 12 2.1 步態週期 12 2.2 主要設計理念與初步構想 14 2.3 螺旋彈簧基本理論 16 2.4 波型彈簧基本理論 27 2.4.1 波型彈簧的介紹 27 2.4.2 波型彈簧的理論與應力分布 32 2.5 小結 40 第三章 彈性結構主體之設計 41 3.1 彈簧主體之剛性設計 41 3.1.1 剛性曲線與儲能 42 3.1.2 目標剛性與目標儲能值 44 3.2 初期設計討論 46 3.2.1 可設計的幾何尺寸 47 3.2.2 有限元素法模擬方法 52 3.3 小結 55 第四章 鞋底緩衝儲能彈簧模擬結果 56 4.1 波型彈簧幾何參數設計與其模擬結果 57 4.1.1 厚度參數對彈簧性能的影響 57 4.1.2 波形曲率參數的影響 61 4.2 以彈簧組合控制剛性曲線的方法 67 4.2.1 雙疊層波型彈簧 67 4.2.2 內外雙圈波型彈簧 69 4.2.3 預壓波型彈簧 71 4.3 合乎實例之波型彈簧設計 73 4.3.1 彈簧性能目標值 74 4.3.2 彈簧幾何設計比較與最終彈簧組合模擬成果 75 4.4 小結 82 第五章 結論與未來建議 84 5.1 結論 84 5.2 未來建議 85 參考文獻 87 附錄 92

[1] D. E. Hurwitz, A. R. Ryals, J. A. Block, L. Sharma, T. J. Schnitzer, and T. P. Andriacchi, “Knee Pain and Joint Loading in Subjects with Osteoarthritis of the Knee,” Journal of Orthopaedic Research, Vol. 18, No. 4, pp. 572–579, Jul. 2000.
[2] I. Davis, “Gait Retraining : Altering the Fingerprint of Gait,” Journal of Foot and Ankle Research, Vol. 4, No. S1, May 2011
[3] A. Hreljac, R. N. Marshall, and P. A. Hume, “Evaluation of lower extremity overuse injury potential in runners,” Medicine & Science in Sports & Exercise, Vol. 32, No. 9, pp. 1635–1641, Sep. 2000.
[4] D. Naville, Sporting and Exercicing Device Having a Foot Receiving Portion and an Anticollapse Spring Portion, U.S. Patent, No. 5643148, 1997
[5] A. A. Zadpoor, A. Asadi Nikooyan, and A. Reza Arshi, “A model-based parametric study of impact force during running,” Journal of Biomechanics, Vol. 40, No. 9, pp. 2012–2021, Jan. 2007.
[6] Q. H. Ly, A. Alaoui, S. Erlicher, and L. Baly, “Towards a footwear design tool: Influence of shoe midsole properties and ground stiffness on the impact force during running,” Journal of Biomechanics, Vol. 43, No. 2, pp. 310–317, Jan. 2010.
[7] 黃偉晟,鞋底緩衝回彈結構的設計與改良,國立臺灣科技大學研究所碩士論文,2015。
[8] K. J. Riess, “Mechanical spring techNology improves running ecoNomy in endurance runners,” Journal of Human Sport and Exercise, Vol. 9, No. 4, pp. 782–789, 2014.
[9] F.E. LeVert, D.S. Krafsur, Spring Cushoned Shoe, United States Patent Application Publication, No. US 2005/0126039 A1, 2005.
[10] J.-P. R. Roy and D. J. Stefanyshyn, “Shoe Midsole Longitudinal Bending Stiffness and Running EcoNomy, Joint Energy, and EMG,” Medicine & Science in Sports & Exercise, Vol. 38, No. 3, pp. 562–569, Mar. 2006.
[11] L.C. Jeremy, S.D. Karen, F. Emily, R.G. Joel, E.G. Stefan, H. Derek, H. Olivier, H. Helene, L. Geng, Y. Krissy, Stacked cushioning arrangement for sole structure, United States Patent, No. US 10,856,611 B2, 2020.
[12] M. Ali, A. Nazir, and J.-Y. Jeng, “Mechanical performance of additive manufactured shoe midsole designed using variable-dimension helical springs,” The International Journal of Advanced Manufacturing TechNology, Vol. 111, No. 11–12, pp. 3273–3292, Nov. 2020.
[13] M. R. ul Haq, A. Nazir, and J.-Y. Jeng, “Design for additive manufacturing of variable dimension wave springs analyzed using experimental and finite element methods,” Additive Manufacturing, Vol. 44, Article 102032, Aug. 2021.
[14] M. R. ul Haq, A. Nazir, S.-C. Lin, and J.-Y. Jeng, “Parametric investigation of functionally gradient wave springs designed for additive manufacturing,” The International Journal of Advanced Manufacturing TechNology, Nov. 2021.
[15] J. Guinness, D. Bhattacharya, J. Chen, M. Chen, A. Loh. An observational study of the effect of Nike Vaporfly shoes on marathon performance, 2020 ; arXiv:2002.06105.
[16] B. Mariani, H. Rouhani, X. Crevoisier, and K. Aminian, “Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors,” Gait & Posture, Vol. 37, No. 2, pp. 229–234, Feb. 2013.
[17] C. F. Munro, D. I. Miller, and A. J. Fuglevand, “Ground reaction forces in running: A reexamination,” Journal of Biomechanics, Vol. 20, No. 2, pp. 147–155, Jan. 1987.
[18] A. P. Arya, A. Lees, H. C. Nirula, and L. Klenerman, “A biomechanical comparison of the SACH, Seattle and Jaipur feet using ground reaction forces,” Prosthetics and Orthotics International, Vol. 19, No. 1, pp. 37–45, Apr. 1995.
[19] E. B. Lohman, K. S. Balan Sackiriyas, and R. W. Swen, “A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking,” Physical Therapy in Sport, Vol. 12, No. 4, pp. 151–163, Nov. 2011.
[20] R. G. Budynas, J. K. Nisbett, and J. E. Shigley, Shigley’s mechanical engineering design. New York, Ny: Mcgraw-Hill Education, 2020.
[21] M. T. TodiNov, “Maximum principal tensile stress and fatigue crack origin for compression springs,” International Journal of Mechanical Sciences, Vol. 41, No. 3, pp. 357–370, Mar. 1999.
[22] J. M. Gere, Mechanics of materials, Cengage Learning, pp. 318, 2013.
[23] A. Jurca, J. Žabkar, and S. Džeroski, “Analysis of 1.2 million foot scans from North America, Europe and Asia,” Scientific Reports, Vol. 9, No. 1, Dec. 2019.
[24] 張英會、劉輝航、王德成, 彈簧手冊, 機械工業出版社, 北京, pp. 217, 1997.
[25] H. R. Erfanian-Naziftoosi, S. S. Shams, and R. Elhajjar, “Composite wave springs: Theory and design,” Materials & Design, Vol. 95, pp. 48–53, Apr. 2016.
[26] S. R. Patil, and P. S. Talmale, “A Comparative Study of Wave and Coil Spring Using FEM Approach,” International Engineering Research Journal, pp. 762–767, 2016.
[27] A. C. Ugural and S. K. Fenster, Advanced mechanics of materials and applied elasticity, Boston Pearson, pp. 289–293, 2020.
[28] 美國波型彈簧製造公司Smalley 之官方網站與彈簧尺寸表https://www.smalley.com/blog/top-5-reasons-use-crest-crest-wave-spring
https://www.smalley.com/sites/default/files/pdfs/Wave-Springs-CC2015.pdf
https://www.smalley.com/spring-design/multiple-turn
[29] 李秉儒,鞋底緩衝模組之設計與分析,國立臺灣科技大學研究所碩士論文,2019。
[30] 張宏浩,鞋底緩衝模組剛性曲線之緩衝與儲能性能的分析,國立臺灣科技大學研究所碩士論文,2022。
[31] D. Zhu, I. Duarte-Rabelo, I. N. Ayala-Garcia, and A. Somov, “An electromagnetic in-shoe energy harvester using wave springs,” 2018 IEEE Industrial Cyber-Physical Systems (ICPS), May 2018.
[32] 琴剛線材料參數表: http://www.matweb.com/

無法下載圖示 全文公開日期 2027/02/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE