簡易檢索 / 詳目顯示

研究生: 林芳慶
Fang-Qing Lin
論文名稱: 高強度鋼筋混凝土梁剪力裂縫控制研究
Study on the shear cracking control for high strength reinforced concrete beams
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 廖文義
Wen-I Liao
林克強
Ker-Chun Lin
陳君弢
Chun-tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 340
中文關鍵詞: 高強度鋼筋混凝土剪力強度裂縫寬度跨深比容許應力剪力變形使用性修復性
外文關鍵詞: high-strength reinforced concrete, shear crack, crack width, shear-span ratio, serviceability, reparability
相關次數: 點閱:458下載:52
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究共進行十組四點荷重之簡支梁試驗,其中兩組斷面尺寸為400 mm(寬)×700 mm(深),試體長度為6600mm,其於八組試體斷面尺寸為350 mm(寬)×500 mm(深),試體長度為4600mm及2600mm各四組,依跨深比分為3.33、3.25、2.75、2.0和1.75五種,皆使用SD685之主筋(6根)搭配SD785之箍筋(箍筋間距300mm),主筋比為2.04%及3.5%,箍筋比為0.21及0.24%,混凝土強度為70~90MPa。上述試體規劃主要以跨深比為參數,針對高強度鋼筋混凝土梁於剪力破壞下之剪力裂縫發展行為,除探討國內外規範及研究者建議公式之適用性外,將依剪力裂縫角度、裂縫寬度(最大值與殘留值)及構件變形角之量化關係,建立梁構件剪力變形角之評估公式,且由混凝土開裂剪應力、混凝土極限剪應力及構件斷面平均剪應力採線性迴歸之方法,建議各構件性能點之混凝土容許剪應力及箍筋容許應力,並建立高強度鋼筋混凝土梁構件使用性能(剪力裂縫寬度0.3mm)確保及修復性能(剪力裂縫寬度1.0mm)確保下,各構件性能點之容許剪應力計算式。


  This work tests ten full-size simple-supported beam specimens with the high-strength reinforcing steel bars (SD685 and SD785) using the four-point loading. The measured compressive strength of the concrete is in the range of 70–90 MPa. The main variable considered in the study is shear span-to effective depth ratio. Base on the experimental date that include maximum shear crack width, residual shear crack width, angle of the main crack and shear drift ratio, a simplified equation are proposed to predict the shear deformation of the HSRC beam member. Besides of the post-earthquake damage assessment, these results can also be used to build the performance-based design for HSRC structures. And using the allowable shear stress at the peak maximum shear crack width of 0.3 mm and 1.0 mm to suggest the design formulas that can ensure serviceability (long-term loading) and reparability (short-term loading) for shear-critical high-strength reinforced concrete (HSRC) beam members.

致謝 摘要 目錄 表索引 圖索引 第一章 緒論 1.1研究背景與目的 1.2研究方法與架構 第二章 文獻回顧 2.1梁構件剪力強度計算相關規範 2.1.1 ACI318-11對於鋼筋混凝土剪力強度設計之規範 2.1.2 日本建築學會•鋼筋混凝土構造計算準則 2.1.3日本建築學會•鋼筋混凝土建築物之韌性保證型耐震設計指針 2.1.4 日本土木學會•鋼筋混凝土標準規範【設計編】 2.2日本建築學會•鋼筋混凝土建築物之耐震性能評價指針 2.2.1撓曲殘留裂縫與變形角之關係 2.2.2剪力殘留裂縫與變形角之關係 2.2.3箍筋降伏與變形角之關係 2.2.4剪力裂縫寬度與剪力變形角關係之修正提案 2.3國外鋼筋混凝土梁構件相關之文獻 2.3.1混凝土剪力強度相關文獻 2.3.2剪力變形相關文獻 2.4國內鋼筋混凝土梁構件相關之文獻 2.4.1剪力裂縫相關參數建議 2.4.2 其他高強度混凝土梁相關文獻 第三章 試體設計與試驗程序 3.1試體規劃 3.1.1試體設計參數 3.1.2試體尺寸與配筋設計 3.2試驗裝置 3.3試驗程序 3.4試驗量測 3.4.1外部量測 3.4.2材料應變量測 3.4.3裂縫寬度量測 3.5 實際材料強度 第四章 試驗結果 第五章 試驗結果之分析與討論 5.1混凝土開裂剪應力之比較 5.1.1規範建議之混凝土開裂剪應力 5.1.2其他研究建議之混凝土開裂剪應力 5.1.3本研究建議之混凝土開裂剪應力 5.2混凝土極限剪應力之比較 5.2.1規範建議之混凝土極限剪應力 5.2.2其他研究建議之混凝土極限剪應力 5.2.3本研究建議之混凝土極限剪應力 5.3剪力裂縫與剪力變形之發展 5.3.1剪力變形包絡線 5.3.2剪力變形與撓曲變形之貢獻 5.3.3剪力裂縫之角度 5.3.4剪力裂縫寬度相關之比值 5.3.5剪力裂縫寬度與箍筋應變之關係 5.4剪力裂縫與剪力變形之控制 5.4.1剪力變形角計算方式 5.4.2剪力變形角之計算與預估 5.4.3剪力裂縫控制之容許應力 5.4.4剪力裂縫控制之混凝土容許剪應力 第六章 結論與建議 6.1結論 6.2建議 參考文獻 附錄A 附錄B 附錄C

[1]AIJ. 2004. Guidelines for Performance Evaluation of Earthquake Resistant Reinforced Concrete Buildings (Draft), Architectural Institute of Japan, Tokyo, Japan.
[2]ACI. 2011. Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute (Committee 318), Farmington Hills.
[3]AIJ. 2010. Standard for Structural Calculation of Reinforced Concrete Structures, Architectural Institute of Japan, Tokyo, Japan.
[4]AIJ. 1999. Design Guidelines for Earthquake Resistant Reinforced Concrete Buildings Based on Inelastic Displacement Concept, Architectural Institute of Japan, Tokyo, Japan.
[5]JSCE. 2007 Standrad Specifications for Concrete Structures, Design, Japan Society of Civil Engineers, Japan.
[6]ACI. 1986. Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute (Committee 318), Farmington Hills.
[7]Shimazaki, K. 2009. Evaluation of shear crack width based on shear force ratio, AIJ Journal of Technology and Design (Architectural Institute of Japan, AIJ), 15(29), 139-142.
[8]JSCE.1996 Standrad Specifications for Concrete Structures, Design, Japan Society of Civil Engineers, Japan.
[9]S.B.Bhide, M.P.Collins. 1989. Influence of Axial Tension on the Shear Capacity of Reinforced Concrete Members, ACI Structural Journal, Sep.-Oct., pp.5 [10]SUGI Taichi, 2007, Damage Evaluation of RC Beam Members Based on Accurate Measurement of Displacement and Crack Widths with Scanner. (Part 2) Proposal of Rational Suggestion of Quantitative Evaluation Model for Evaluating of Shear Crack width-Shear Deformation Relationship., Architectural Institute of Japan, Tokyo, Japan,pp.373-374.
[11]Fujita, M.; Sato, R.; Matsumoto, K.; and Takaki, Y., 2002,Size Effect on Shear Strength of RC Beams Using HSC without Shear Reinforcement, JSCE, V. 56(711), pp. 161-172.
[12]Junichiro NIWA, 1986, Revaluation of the Equation for Shear Strength of Reinforce Concrete Beams without Web Reinforcement. , JSCE, V. 5(372), pp. 167-176.
[13]Khuntia, M., and Stojadinovic, B., 2001, Shear Strength of Reinforced Concrete Beams without Transverse Reinforcement, ACI Structural Journal, V. 98, No. 5, pp. 648-656.
[14]Michael P. Collins and Daniel Kuchma, 1999, How Safe Are Our Large, Lightly Reinforced Concrete Beams, Slabs, and Footings? , ACI Structural Journal, V. 96, No. 4, pp.482-491.
[15]Yasuhiko Sato, 2004, Diagonal Tensile Failure Mechanism of Reinforced Concrete Beams. Journal of Advanced Concrete Technology Vol. 2, No.3, pp 327-341..
[16]陳崇慶, 邱建國. 高強度鋼筋混凝土梁之剪力裂縫行為研究, 碩士論文, 國立台灣科技大學營建工程研究所, 2013.
[17]王勇智, 余成偉. 高強度鋼筋混凝土梁塑性鉸長度之探討, 碩士論文, 國立中央大學土木工程研究所, 2013.
[18]Paulay, T. and Priestley, M. J. N , 1992, Seismic Design of Reinforced Concrete and Masonry Building, John Wiley & Sons.
[19]Hwang,S.J. and Lin,K.C. 2010. Research and Development of New-RC System in Taiwan, NCREE, Taipei, Taiwan.

QR CODE