簡易檢索 / 詳目顯示

研究生: 黃琨傑
Kun-Jie Huang
論文名稱: 應用於無線多頻之連續時間三角積分類比數位轉換器晶片設計
The Continuous-Time Sigma-Delta ADC Chip Design for Wireless Broadband Applications
指導教授: 黃進芳
Jhin-Fang Huang
劉榮宜
Ron-Yi Liu
口試委員: 徐敬文
Ching-Wen Hsue
張勝良
Sheng-Lyang Jang
江正雄
Jen-Shiun Chiang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 124
中文關鍵詞: 三角積分類比數位轉換器抽樣濾波器類比數位轉換器正交帶通三角積分調變器
外文關鍵詞: sigma-delta ADC, decimation filter, analog to digital converter, quadrature bandpass sigma delta modulator
相關次數: 點閱:264下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,包括有兩個連續時間三角積分調變器以TSMC 0.18 um 金氧半(CMOS)製程被設計與製作與一個抽樣濾波器(Decimation Filter)設計,第一個是應用於多頻帶的連續時間低通三角積分數位類比轉換器,其中三角積分調變器完成了晶片下線與量測結果,並結合抽取樣濾波器完成三角積分數位類比轉換器;此晶片採用了CICFF迴路濾波器,相較於傳統CIFF架構,其電容式前饋方式電路是一種簡單的實現方式且具有低功率消耗特性。此晶片時脈為160 MHz的情況下,在一個5MHz的頻寬內這個調變器量測到52 dB的動態範圍,SNDR為47.1 dB,IM3為-40.4 dB。在1.8 V的電源下量測的功率消耗是10.8 mW。包含Pads的晶片面積是1.09 (1.173 x 0.86) mm^2。
    雖然三角積分數位類比轉換器能容忍類比電路的不完美特性,但其輸出需要經過抽取濾波器,此抽取濾波器由一個串聯積分梳狀濾波器(CIC Filter)及二個半帶濾波器(Halfband Filter)組成.超取樣三角積分調變器輸出訊號經由抽取濾波器降頻為奈奎斯特數位類比轉換器,此抽取樣濾波器有效將高頻雜訊濾除掉,同時也防止高頻雜訊折疊到低頻頻帶內,此連續時間低通三角積分數位類比轉換器後模擬結果為SNDR達到59.8 dB與63.5 dB動態範圍,功率消耗為79 mW.
    此外,第二個調變器晶片為應用於LTE連續時間四相位帶通三角積分調變器,使用四相位帶通三角積分器可降低直流偏差(DC offset)與閃爍雜訊(Flicker Noise)。而為了移除一個被用在CIFF架構的加總放大器,電容式前饋架構同樣被使用,同時在迴路濾波器中加入了回授電阻去做最佳化零,此三角積 分調變器採用一位元輸出以減少硬體的複雜性與功率消耗。此晶片在2.5 MHz的訊號頻寬內晶片量測到56 dB的動態範圍,SNDR為52.8 dB,功率消耗為18.5 mW。包含pad的總晶片面積為1.95 ( 1.3 x 1.5) mm^2。


    In this thesis, two CT sigma-delta modulators are designed and fabricated. The first one is the continuous time lowpass ΣΔ ADC with one decimation filter for wireless broadband applications. In this chip, CICFF topology is applied. Compared with conventional CIFF topology, the capacitive feedforward architecture is a simple approach and has an advantage of low power dissipation.
    For the first ΣΔ modulator, the modulator achieves a measured dynamic range of 52 dB over a 5 MHz signal bandwidth, SNDR of 47.1 dB, IM3 of -40.4 dB, power consumption of 10.8 mW at 1.8 V supply with 160 MHz clock frequency. Including pads, the overall chip area is 1.09 (1.173 x 0.86) mm^2. Although ΣΔ modulators have high tolerance for the imperfection of analog circuit, a decimation filtering the output stream of ΣΔ modulators enhance the ADC’s performance. The decimation filter consists of a cascaded integer and comb filter (CIC filter) and two halfband filters. The output signal of oversampling ΣΔmodulator is down converted by decimation filter; thus, a Nyquist rate bandwidth is obtained for the ΣΔ ADC. The decimation filter can filter noise from high frequency effectively and prevent high frequency noise from folding to desired baseband frequency range. The simulated results achieve SNDR of 59.8 dB, dynamic range of 63.5 dB, and power consumption of 79 mW.
    The second modulator chip is the CT quadrature bandpass ΣΔ modulator for LTE application. Using the quadrature bandpass ΣΔ modulator can solve the problem of DC offset and flicker noise. Also, to erase the summation amplifier used in the CIFF topology, the capacitive feedforward structure is also employed. The loop filter is added the feedback resistor to optimize zero. The ΣΔ modulator adopt single bit which can reduce hardware complexity and power consumption. For the second ΣΔ modulator, the overall measured results achieve dynamic range of 56 dB over a 2.5 MHz input signal bandwidth, SNDR of 52.8 dB and power dissipation of 18.5 mW. The overall chip area is 1.95 (1.3 × 1.5) mm^2.

    Chapter 1 Introduction 1 1. 1 Motivation 1 1. 2 Organization 2 Chapter 2 Basic Concepts of Delta Sigma Modulator 5 2. 1 Introduction 5 2. 2 Analog-to-Digital Conversion 5 2. 3 Quantization 6 2. 4 Performance Metrics 9 2. 5 Sigma Delta Modulator 11 2.5. 1 Oversampling 11 2.5. 2 Noise-Shaping ΔΣ ADC 12 2.5. 3 Multi-Bit ΔΣ Modulator 13 2.5. 4 Dynamic Element Matching 13 2.5. 5 Continuous-Time and Discrete-Time Loop Filter 14 2. 6 DT-to-CT Conversion of ΣΔ ADC 15 2. 7 Frequency Compensation by the Feedforward or Feedback. 17 2.7. 1 Cascade of Integrators with Distributed Feedback (CIFB) 17 2.7. 2 Cascade of Integrators with Distributed Feedforward (CIFF) 18 2. 8 Paper Survey 19 2. 9 Summary 24 Chapter 3 The Continuous-Time Sigma-Delta Modulator Chip Design for LTE Application 25 3. 1 Introduction 25 3. 2 Design of the Continuous Time lowpass Delta Sigma ADC 26 3.2. 1 Specification 26 3.2. 2 Sigma-Delta ADC Circuit 26 3.2. 3 Loop Filter Design 27 3.2. 4 Zero Optimization and Root Locus 28 3.2. 5 Coefficients Design of Loop Filter 30 3. 3 Effects of Non-Idealities on Lowpass ADC Performance. 31 3.3. 1 Finite Gain and Finite Bandwidth of Op Amp 31 3.3. 2 RC Product Variation 32 3.3. 3 Clock Jitter 33 3.3. 4 Excess Loop Delay 34 3.3. 5 DAC Element Mismatch 35 3. 4 Circuit Implementation 35 3.4. 1 Op Amp Circuit 36 3.4. 2 Quantizer 38 3.4. 3 Current Steering DACs for Global Feedback 40 3.4. 4 Current Steering DACs for Local Feedback 41 3.4. 5 Data Weighted Averaging 41 3. 5 Layout Consideration of Modulator 42 3. 6 Simulation Results of Modulator 44 3.6. 1 Simulation of Output Swing of Op Amp 44 3.6. 2 Simulation of Non-idealities on Modulator Performance 44 3.6. 3 Simulation of Output Spectrum and dynamic range 45 3. 7 Measurement Results 48 3.7. 1 Chip Photograph 48 3.7. 2 Measurement Setup 49 3.7. 3 Measurement Results of Sigma-Delta Modulator 51 3. 8 Summary 54 Chapter 4 Design of Decimation Filter 55 4. 1 Introduction 55 4. 2 System Description and Specifications 55 4.2. 1 DC Offset Correction 56 4.2. 2 CIC Decimation Filter 57 4.2. 3 Halfband Filter 59 4. 3 Implementation of Decimation Filter 62 4.3. 1 Truncation of Insignificant Bits 63 4.3. 2 Overflow Condition 64 4.3. 3 1-bit Full Adder 65 4.3. 4 D Flip-Flop Circuit 66 4.3. 5 1-bit Integrator and Differentiator 67 4.3. 6 Cascaded Integrator and Comb Filter 68 4.3. 7 Halfband Filter Design 69 4. 4 Layout consideration 71 4. 5 Simulation Results of Sigma-Delta ADC Chip 72 4.5. 1 Transient Simulaton 72 4.5. 2 Simulation of Halfband Filter and CIC Filter 72 4.5. 3 Simulation of Output Spectrum and Dynamic Range 73 4. 6 Summary 79 Chapter 5 Chip Design of the CT Quadrature Bandpass Sigma-Delta Modulator with Capacitive Feedback 81 5. 1 Introduction 81 5. 2 Complex Bandpass Modulator 82 5.2. 1 Complex Filter 82 5.2. 2 Complex Noise Transfer Function 82 5.2. 3 Complex ΔΣM Architecture 83 5. 3 Design of the Continuous Time Complex Bandpass Delta Sigma Modulator 84 5.3. 1 Lowpass Loop Filter with CICFF Architecture 84 5.3. 2 Polyphase Quadrature Bandpass Loop Filter 84 5.3. 3 Modulator Circuit Design 85 5.3. 4 Continuous-Time Quadrature Bandpass ΣΔ Modulator 86 5. 4 Circuit Implementation 87 5.4. 1 Tunable Capacitor Array 87 5.4. 2 Op Amp 88 5.4. 3 Bias Circuit 88 5.4. 4 Quantizer, D-Latch, and DAC Circuits 89 5. 5 Effects of Non-Idealities on Modulator Performance 90 5.5. 1 Effect of Non-Ideal Opamp 90 5.5. 2 RC Product Variation 91 5.5. 3 Clock Jitter 91 5.5. 4 Channel Mismatch 92 5. 6 Layout 92 5. 7 Simulation Results 93 5. 8 Measurement Result 95 5. 9 Summary 100 Chapter 6 Conclusions and Future Work 101 Reference 103 Appendix 108

    [1] M. Bolatkale, L. J. Breems, R. Rutten, and K. A. A. Makinwa, “A 4 GHz continuous-time ΔΣ ADC with 70 dB DR and -74 dBFS THD in 125 MHz BW,” IEEE J. Solid-State Circuits, vol. 46, pp. 2857-2868, Dec. 2011.
    [2] H. Van de Vel, B. Buter, H. van der Ploeg, M. Vertregt, G. Geelen, and E. Paulus, “A 1.2-V 250-mW 14-b 100-MS/s digitally calibrated pipeline ADC in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1047–1056, Apr. 2009.
    [3] S. Devarajan, L. Singer, D. Kelly, S. Decker, A. Kamath, and P. Wilkins, “A 16-bit, 125 MS/s, 385 mW, 78.7 dB SNR CMOS pipeline ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3305–3313, Dec. 2009.
    [4] A. Ali, A. Morgan, C. Dillon, G. Patterson, S. Puckett, P. Bhoraskar, H. Dinc, M. Hensley, R. Stop, S. Bardsley, D. Lattimore, J. Bray, C. Speir, and R. Sneed, “A 16-bit 250-MS/s IF sampling pipelined ADC with background calibration,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2602–2612, Dec. 2010.
    [5] S. Louwsma, A. van Tuijl, M. Vertregt, and B. Nauta, “A 1.35 GS/s, 10 b, 175 mW time-interleaved AD converter in 0.13 μmm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 778–786, Apr. 2008.
    [6] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters, Piccataway, NJ: IEEE Press, 2005.
    [7] H. Shibata, D. Paterson, S. R.. Schreier, N. Abaskharoun,e, I. Mehr, and Q. Luu, “A 375-mW quadrature bandpass Delta Sigma ADC with 8.5-MHz BW and 90-dB DR at 44 MHz,” IEEE J. Solid-State Circuits, vol. 41,no. 12, pp. 2632–2640, Nov. 2009.
    [8] Z. Li and T. S. Fiez, "A 14-bit continuous-time delta-sigma A/D modulator with 2.5 MHz signal bandwidth," IEEE J. Solid-State Circuits, vol. 42, pp. 1873-1883, Sep. 2007.
    [9] W. Yang, W. Schofield, H. Shibata, S. Korrapati, A. Shaikh, N. Abaskharoun, and D. Ribner, ”A 100mW 10 MHz-BW CT ΔΣ Modulator with 87dB DR and 91dBc IMD,” ISSCC Dig. Tech. Papers , 2008, pp. 498–499.
    [10] L. Dörrer, F. Kuttner, P. Greco, P. Torta, and T. Hartig. “A 3-mW 74-dB SNR 2-MHz continuous-time delta-sigma ADC with a tracking ADC quantizer in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 2416-2427, Dec. 2005.
    [11] R. Schreier, N. Abaskharoun, H. Shibata, D. Paterson, S. Rose, I. Mehr, and Q. Luu, “A 375-mW Quadrature Bandpass Delta Sigma ADC With 8.5-MHz BW and 90-dB DR at 44 MHz,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2632-2640, Dec. 2006.
    [12] B. Javid, “Low-Power Delta-Sigma A/D Design for Broadband Applications,” Master Thesis, Toronto University, 2006.
    [13] F. Medeiro, A. Perez-Verdu, and A. Rodriguez-Vazquez, Top-Down Design of High-Performance Sigma-Delta Modulators, Kluwer Academic Publishers, 1999.
    [14] G. I. Bourdopoulos, A. Pnevmatikakis, V. Anastassopoulos, and T. L. Deliyannis, Delta-Sigma Modulators, Imperial College Press, 2009.
    [15] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta A/D Conversion, New York: Springer, 2006.
    [16] A. Marques, V. Peluso, M. S. Steyaert, and W. M. Sansen, “Optimal Parameters for ΔΣ Modulator Topologies,” IEEE Trans. Circuits Syst. II, vol. 45, No. 9, pp. 1232-1241, Sept. 1998.
    [17] B. C. Nordick, “Dynamic element matching techniques for delta-sigma ADCs with large internal quantizers,” Master Thesis, Brigham Young University, 2004.
    [18] Z. Li, “Design of a 14-bit continuous-time delta-sigma A/D modulator with 2.5MHz signal bandwidth,” Ph.D. Thesis, Oregon State University, 2006.
    [19] Paulo G. R. Silva and Johan H. Huijsing, High-Resolution IF-to-Baseband Sigma-Delta ADC for Car Radios, Springer, 2008
    [20] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters-Theory, Design, and Simulation. Piccataway, NJ: IEEE Press, 1996.
    [21] S. B. Kim, S. Joeres, R. Wunderlich, and S. Heinen, “A 2.7 mW, 90.3 dB DR continuous-time quadrature bandpass sigma-delta modulator for GSM/EDGE low-IF receiver in 0.25 μm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 891-900, Mar. 2009.
    [22] A. Hart and S. P. Voinigescu, “A 1 GHz bandwidth low-pass ΣΔ ADC with 20-50 GHz adjustable sampling rate,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1401-1414, May 2009.
    [23] L. Breems and J. H. Huijsing, Continuous Time Sigma Delta Modulation for A/d Conversion in Radio Receivers, Springer, 2001.
    [24] F. Munoz, “A 4.7 mW 89.5 dB DR CT Complex DS ADC with Built-in LPF,” IEEE ISSCC Dig. Tech. Papers, pp. 500-501, Feb. 2005.
    [25] M. S. Kappes, “A 2.2-mW CMOS Bandpass Continuous-Time Multi-bit ΔΣ ADC with 68 dB of Dynamic Range and 1-MHz Bandpass for Wireless Applications,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1098-2003, Jul. 2003.
    [26] V. Peluso, A. Marquez, M. Steyaert, and W. Sansen, “Optimal Parameters for Single Loop ΣΔ modulator,” IEEE International Sym. on Circuit and Systems, pp. 57-60, June 1997.
    [27] N. Yaghini, Design of a Wideband Quadrature Continuous-Time Delta-Sigma ADC, M.S thesis, University of Toronto, 2004.
    [28] A. Van den Bosch, M. Borremans, S. J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, pp. 315-324, Mar. 2001.
    [29] T. H. Kuo, K. D. Chen, and H. R. Yeng, “A wideband CMOS sigma-delta modulator with incremental data weighted averaging,” IEEE J. Solid-State Circuits, vol. 37, pp. 11-17, Jan. 2002.
    [30] W. L. Yang, W. H. Hsieh ,and C. C. Hung, “A third-order continuous-time sigma-delta modulator for Bluetooth,” VLSI Design, Automaion and Test , pp.247-250, April 2009.
    [31] S. B. Kim, S. Joeres, N. Zimmermann, M. Robens, R. Wunderlich, and S. Heinen, “Continuous-time quadrature bandpass sigma-delta modulator for GPS/Galileo low-IF receiver,” in Proc. IEEE Int. Workshop on Radio-Frequency Integration Technology, Dec. 2007, pp. 127-130.
    [32] A. Hart and S. P. Voinigescu, “A 1 GHz bandwidth low-pass ΔΣ ADC with 20-50 GHz adjustable sampling rate,” IEEE J. Solid-State Circuits, vol. 44, pp. 1401-1414, May 2009.
    [33] C. Y. Lu, J. F. Siva-Rivas, P. Kode, J. Siva-Martinez, and S. Hoyos, “A sith-order 200 MHz IF bandpass sigma-delta modulator with over 68 dB SNDR in 10 MHz bandwidth ,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp.1122-1136, Jun. 2010.
    [34] D. Johns and K. Martin, Analog Integrated Circuit, Wiley, 1997.
    [35] R. R. Anantha, A programmable CMOS decimator for sigma-delta analog-to-digital converter and charge pump circuits, Master Thesis, Bachelor of Technology, Jawaharlal Nehru Technological University, India, May 2005.
    [36] James Candy, “Decimation for Sigma-Delta Modulation,” IEEE Transaction on Communications, Vol. COM-34, pp. 72-26, Jan. 1986.
    [37] Brian Brandt, Oversampled Analog-to-Digital Conversion, Ph.D. Dissertation, Stanford University, 1991.
    [38] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice Hall,1983.
    [39] B. P. Brandt and B. A. Wooley, “A Low-Power, Area-Efficient Digital Filter for Decimation and Interpolation,” IEEE J. Solid-State Circuits, vol. 29, no. 6, pp. 679-687, June. 1994.
    [40] M. T. Heath , Scientific Computing: An Introductory Survey, McGraw-Hill, 2002.
    [41] N. H. E. Weste and D. Harris, CMOS VLSI Design- A Circuits and Systems Perspective, 3rd edition, Addison Wisley, NY, 2005.
    [42] L. Wanhammar and H. Johansson. Digital Filters. LiU-Tryck, 2007.
    [43] L. Cederström, Power Efficient Digital Decimation Filters for ΣΔ ADCs, M.S thesis, Linkoping University, 2009.
    [44] Y. M. Hasan, L. J. Karam, M. Falkinburg, A. Helwig, and M. Ronning, “Canonic signed digit FIR filter design,” in Asilomar Conference on Signals, Systems and Computers, pp. 1653-1656, Oct. 2000.
    [45] Y. L. Guillou, O. Gaborieau, P. Gamand. M. Isberg, P. Jakobsson, L. Jonsson, D. L. Déaut, H. Marie, S. Mattisson, L. Monge, T. Olsson, S. Prouet, and T. Tired, “Highly Integrated Direct Conversion Receiver for GSM/GPRS/EDGE With On-Chip 84-dB Dynamic Range Continuous-Time ΣΔ ADC,” ,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 403-411, Dec. 2005.
    [46] J. C. Morizio, M. Hoke, T. Kocak, C. Geddie, C. Huaghes, J. Perry, M. H. Hood, G. Lynch, H. Kondoh, T. Kumamoto, T. Okuda, H. Noda, T. Miki, and M. Nakaya, “14-bit 2.2- MS/s sigma-delta ADC’s,” IEEE J. Solid-State Circuits, vo35, no. 7, pp. 2857-2868, Jul. 2000.
    [47] S. Gupta, D. Gangopadhyay, H. Lakdawala, J. C. Rudell, and D. J. Allstot, “A 0.8–2 GHz fully-integrated QPLL-timed direct-RF-sampling bandpass ΣΔ ADC in 0.13 um CMOS,” ,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1141-1152, May. 2012.
    [48] B. Pandita and K. W. Martin, “Oversampling A/D Converters With Reduced Sensitivity to DAC Nonlinearities,” IEEE Trans. Circuits Syst. II, vol. 56, no. 11,pp. 840–844, Dec. 2009.
    [49] J. A. Cherry and W. M. Snelgrove, “Clock Jitter and Quantizer Metastability in Continuous-Time Delta–Sigma Modulators,” IEEE Trans. Circuits Syst. II, vol. 46, No. 9, pp. 661-676, June. 1999.
    [50] L. J. Breems, R. Rutten, R.H. M. van Veldhoven, and G. van der Weide, “A 56 mW continuous-time quadrature cascaded delta sigma modulator With 77 dB DR in a Near Zero-IF 20 MHz Bandwidth,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2696-2705, Dec. 2007..
    [51] R. Yu and Y. P. Xu, “Electromechanical-filter-based bandpass sigma-delta modulator,” IEEE Trans. Circuits Syst.Ⅱ, vol. 56, no. 7, pp. 550-554, Jul. 2009.
    [52] D. K. Hendraningrat, “Analysis of slot spectrum selection for long term evolution (LTE),” in Proc. IEEE Int. Telecommunication Systems, Services, and Applications, Denpasar, Indonesia, Oct. 2011, pp. 267-270.
    [53] S. Abeta, “Toward LTE commercial launch and future plan for LTE enhancements (LTE-advanced),” in Proc. IEEE Int. Communication Systems, Singapore, Nov. 2011, pp. 146-150.
    [54] Z. Zeng, C. S. Dong, and X. Tan, “A 10-bit 1MS/s low power SAR ADC for RSSI application,” IEEE Intl. Conf. on Solid-State and Integrated Circuit Tech., Nov. 2010, pp. 569-571.
    [55] O. Oliaei, “Design of continuous-time sigma-delta modulator with arbitrary feedback waveform,” IEEE Trans. Circuits Syst.Ⅱ, vol. 50. no. 8, pp. 437-444, Aug. 2003.
    [56] J. A. Cherry, and W. M. Snelgrove, Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion, Kluwer Academic Publisher, Dordrecht, 1999.
    [57] M. Ortmanns, F. Gerfers, and Y. Manoli, “A case study on a 2-1-1 cascaded continuous-time sigma-delta modulator,” IEEE Trans. Circuits Syst Ⅰ. Vol. 52, no. 8, pp. 1515-1525, Aug. 2005.

    QR CODE