簡易檢索 / 詳目顯示

研究生: 廖盈惠
Ying-Huei Liao
論文名稱: 氧化鋅奈米桿結構對Hybrid太陽電池效率之影響
Effect of ZnO Nanostructure on the Performance of Hybrid Solar Cells
指導教授: 劉進興
Chin-Hsin J. Liu
口試委員: 戴龑
Yian Tai
陳貴賢
Kuei-Hsien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 133
中文關鍵詞: 氧化鋅奈米桿太陽電池長度間隙
外文關鍵詞: ZnO nanorod, Hybrid solar cell, Length, Spacing
相關次數: 點閱:489下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以水熱法製備不同表面型態的氧化鋅奈米桿(ZnO Nanorods),以SEM、XRD觀察其表面型態及晶相的改變,再利用奈米桿製備結構為ITO/ZnO nanorods/P3HT/Au之Hybrid太陽電池元件,探討其不同表面型態的氧化鋅奈米桿對於元件效能之影響。
我們主要探討四個部分,第一部分為氧化鋅奈米桿的間隙(spacing) 之影響。利用水熱濃度0.03M、0.04M及0.05M成長的奈米桿,奈米桿間隙分別為25nm、19.5nm及16.4nm。因為有機太陽電池之激子擴散長度小於20nm,間隙太大時有太多recombination現象。間隙太小則高分子不易進入。我們發現在奈米桿間隙為19.5nm時,可得最佳結果。
第二部分為奈米桿長度(length)的影響。在溫度90℃、95℃、105℃成長奈米桿,奈米桿長度分別為180nm、365nm及500nm。增加奈米桿長度可以增加junction area,提升電流,在奈米桿長度為500nm時,可得最大電流2.72mA/cm2。
第三部分探討在不同奈米桿長度下P3HT高分子覆蓋量的影響。我們發現,增加高分子覆蓋量可以有效改善漏電流現象,但高分子覆蓋量過高時,也會增加串聯電阻,降低JSC。
第四部分探討熱處理溫度與時間對元件的影響。熱處理可改善高分子與奈米桿的接觸,並提高高分子的結晶性,但過度的熱處理,反而會破壞高分子的結晶性,使JSC下降。
最後結果是,以水熱濃度0.04M,成長溫度95℃,成長時間2小時,所成長的氧化鋅奈米桿長度為365nm、間隙為19.5nm、P3HT高分子覆蓋量為280nm (濃度30mg/ml CB溶劑),且元件熱處理條件為150℃、20分鐘,所製備得之Hybrid太陽電池,在AM1.5和GG400 Filter之下的光轉換效率為0.62%,Voc = 0.44V、Jsc = 2.52mA/cm2、Fill Factor = 50.30%。


In this thesis, we grow ZnO nanorods by the hydrothermal method, and use the ZnO nanorods to fabricate a hybrid solar cell with the structure of ITO/ZnO nanorod/P3HT/Au. SEM and XRD are utilized to analyze the morphology of ZnO and P3HT, and the crystallinity of P3HT.
The thesis consists of four parts. In the first part, we investigate the “spacing effect”. Since the exciton diffusion length of organic solar cell is about 20nm, we have to control the spacing to be smaller than 20nm, but the polymer can not get in if the gap is too small. We find that the optimum spacing to be 19.5nm.
In the second part, we discuss the “Length effect”. We controlled the length of nanorod by varying the hydrothermal temperature. At 90℃, 95℃ and 105℃, the results are 180nm, 365nm and 500nm, respectively. Increasing the nanorod length increases the junction area, and thus increases the photocurrent. The best photocurrent is found to be 2.72 mA/cm2 as the nanorod is 500 nm long.
In the third part, we discuss the effect of the amount of polymer to cover the ZnO nanorod with various thicknesses. We find that serious leakage current will occur if the amount of polymer is not enough to cover the nanorods, but the photocurrent decreases if too much polymers are accumulated on top of the nanorods, which will cause a high series resistance.
In the final part, we discuss the effect of temperature and time duration of annealing. Suitable annealing can improve the contact between the polymer and the nanorod, and also can enhance the crystallinity of the P3HT polymer. On the other hand, over-annealing will destroy the crystallinity of the polymer, and cause a decrease in photocurrent.
Overall, we have optimumized the device with the following parameters: with ZnO nanorod spacing at 19.5nm, the nanorod length at 365nm, the effective P3HT polymer thickness at 280nm (30mg/ml chlorobenzene), and the annealing time is 20min at 150℃, the ZnO nanorod based device shows that Voc=0.44V,Jsc=2.52mA/cm2,Fill Factor=50.30%,and the energy conversion efficiency is 0.62% under AM 1.5 solar illumination with a GG400 filter.

摘要 I 目錄 II 圖目錄 V 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 再生能源 2 1-3 無機太陽能電池 2 1-4 有機太陽能電池 3 1-5 研究動機與目的 4 第二章 文獻回顧與基礎理論 5 2-1 太陽能電池操作原理與轉換效率 5 2-1-1 太陽能電池工作原理 5 2-1-2 太陽能電池轉換效率 7 2-1-3 太陽能電池之等效電路(Equivalent Circuit Diagram) 9 2-1-4 太陽能電池之量子效率(Quantum Efficiency) 11 2-2 太陽光光譜分佈(spectrum irradiance) 12 2-3 有機太陽能電池(Organic solar cells) 13 2-3-1 Single-layer 14 2-3-2 Bulk-Heterojunction 16 2-3-3 Hybrid solar cell ( HSC ) 19 2-4 半導體(Semiconductor)簡介 25 2-5 氧化鋅(Zinc oxide, ZnO) 27 2-5-1 氧化鋅-晶體結構 28 2-5-2 氧化鋅-機械性質 30 2-5-3 氧化鋅-光學性質 31 2-5-4 氧化鋅-成長方法 32 2-6 共軛高分子材料簡介 36 2-6-1 P3HT共軛高分子 37 第三章 實驗之方法與步驟 40 3-1 實驗藥品 40 3-2 實驗儀器 42 3-3 Hybrid 太陽能電池之元件製備 43 3-3-1導電玻璃基板( ITO)圖樣化過程與清洗程序 43 3-3-2 氧化鋅種晶層製備方法 45 3-3-3 氧化鋅奈米桿製備方法 46 3-3-4 P3HT-氧化鋅奈米桿太陽元件製備程序 47 3-4 性質量測與結構分析儀器 49 3-4-1 X-ray繞射儀: 49 3-4-2 場發射掃瞄式電子顯微鏡 (FESEM) : 50 3-4-3 紫外-可見光譜儀 50 3-4-4 太陽光源模擬系統 50 3-5 實驗流程圖 52 第四章 結果與討論 53 4-1 氧化鋅奈米桿特性分析 53 4-1-1 水熱濃度對氧化鋅奈米桿之特性影響 55 4-1-2 成長溫度對氧化鋅奈米桿之特性影響 62 4-2 氧化鋅奈米桿對太陽電池效率之影響 67 4-2-1 不同水熱濃度對太陽元件效率之影響 68 4-2-2 不同成長溫度對太陽電池效率之影響 73 4-3 不同奈米桿長度與高分子覆蓋量對太陽元件效率之影響 77 4-3-1 奈米桿長度固定為180nm,高分子覆蓋量對元件效率影響 78 4-3-2 奈米桿長度固定為365nm,高分子覆蓋量對元件效率影響 83 4-3-3 奈米桿長度固定為500nm,高分子覆蓋量對元件效率影響 88 4-3-4 綜合比較氧化鋅奈米桿長度與高分子覆蓋量的最佳結果 93 4-4 不同熱處理時間對太陽電池效率之影響 95 4-5 不同溶劑製程對太陽電池效率之影響 102 4-6 最佳條件組合 106 第五章 結論 107 第六章 參考文獻 110

[1] 張正華,李凌嵐等,馬振基校訂,“有機與塑膠太陽能電池”,五南圖書(2007)
[2] 莊嘉琛,“太陽能工程-太陽電池篇”,全華(1997)
[3] C. B. Hatfield et al. Nature. 387, 121(1997)
[4] M. A. Green, Keith Emery et al. “Solar Cell Efficiency Tables (Version 33)”Prog. Photovolt: Res. Appl. 17:85-94(2009)
[5] Irene Gonzalez-valls and Monica Lira-Cantu, Energy Environ. Sci., 2, 19-34(2009)
[6] 許嘉文,“高效率有機-無機異質結構太陽能電池之探索”,國立海洋大學(2006)
[7] H. Hoppea, N. S. Sariciftci, J. Mater. Res. 19, 7(2004)
[8] “超高效率太陽能電池-從愛因斯坦的光電效應談起”,物理雙刊,27,701(2005)
[9] K. M. Coakley, M. D. McGehee, Chem. Mater. 16, 4533(2004)
[10] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995).
[11] S. C. Veenstra, W. J. H. Verhees, J. M. Kroon, M. M. Koetse, J. Sweelssem et al. Chem. Mater., 16, 2503 (2004).
[12] M. M. Mandoc, W. Veurman, L. J. A. Koster, M. M. Koetse et al. J. Appl. Phys., 101, 104512 (2007).
[13] C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett., 384, 372 (2004).
[14] W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Mater., 16, 1009 (2004).
[15] L. J. A. Koster, W. J. van Strien, W. J. E. Beek, P. W. M. Blom, Adv. Funct. Mater., 17, 1297 (2007).
[16] W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Funct. Mater., 16, 1112 (2006).
[17] P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, J. J. Nelson, J. Phys. Chem. B, 110, 7635 (2006).
[18] W. U. Huynh, J. J. Dittmer, A. P. Alivisators, Science, 295, 2425 (2002).
[19] B. Sun, E. Marx, N. C. Greenham, Nano Lett., 3, 961 (2003).
[20] B. Sun, H. J. Snaith, A. S. Dhoot, S. Westenhoff, N. C. Greenham, J. Appl. Phys., 97, 014914 (2005).
[21] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater.,11, 15 (2001).
[22] G. Yu, K. Parbaz, A. J. Heeger, Appl. Phys. Lett., 64, 3422 (1994)
[23] H. Antoniadis, B. R. Hsieh, M. A. Abkowize, M. Stolka, S. A. Jenehke, Polym. Prepr.,34, 490 (1993).
[24] H. Antoniadis, B. R. Hsieh, M. A. Abkowize, S. A. Jenehke, M. Stolka, Synth. Met., 62, 265 (1994).
[25] W. RieB, S. Karg, V. Dyakonow, J. Lumin., 60-61, 906 (1994).
[26] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 258, 1471 (1992).
[27] N. S. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett., 62, 585 (1993).
[28] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995).
[29] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature, 376, 498 (1995)
[30] Serap Gűnes et al, “Conjugated Polymer-Based Organic Solar Cells”(2007)
[31] S. R. Brian, T. L. Michael, Adv. Colloid and Interface Science 138, 1(2008)
[32] N. C. Greenham, X. Peng, A. P. Alivisatos, Phys. Rev. 54, 17628(1996)
[33] W. U. Huynh, X. Peng, A. P. Alivisatos, Adv. Mater. 11, 923(1999)
[34] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science, 295, 2425(2002)
[35] W. U. Huynh, J. J. Dittmer, W. C. Libby et al. Adv. Funcy Mater. 13, 73(2003)
[36] B. Sun, E. Marx and N. C. Greenham, Nano Lett., 3, 961(2003)
[37] B. Sun, H. J. Snaith, A. S. Dhoot, N. C. Greenham, J. Appl. Phys., 97, 14941(2005)
[38] W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, J. Mater. Chem., 15, 2985–2988(2005)
[39] S. D. Oosterhout, S. S. van Bavel, M. M. Wienk and R. A. J. Janssen, Abstr. Excitonic Solar Cell Conference, Warwick, UK, 9-12 Sep., P.96 (2008)
[40] A.M Peiró, P. Ravirajan et al., Proc. of SPIE Vol. 5938 593819(2005)
[41] D. C. Olson, S. E. Shaheen, R. T. Collins and D. S. Ginley, J. Phys.
Chem. C, 111, 16670 (2007)
[42] C. T. Barry, M. J. F. Jean, Angew. Chem. Int. Ed., 47, 58, (2008)
[43] N. B. McKeown, “Phthalocyanine Materials”
[44] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai and R. D. McCullough,
Macromolecules, 34, 4324 (2001).
[45] R. D. McCullough, United States Patent 6, 166, 172 (2000).
[46] C. Jagadish, S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier(2006)
[47] H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Mater. Lett. 59, 1696 (2005)
[48] N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, Mater. Sci. Semiconductor Process. 2, 247 (1999)
[49] V. A. Coleman, J. E. Bradby, C. Jagadish, P. Munroe, Y. W. Heo, S. J. Pearton, D. P. Norton, M. Inoue, M. Yano, Appl. Phys. Lett., 86, 203105 (2005).
[50] V. A. Coleman, J. E. Bradby, C. Jagadish, P. Munroe, M. R. Phillips (unpublished).
[51] A. Umar, B. Karunagaran, E-K. Suh, Y. B. Hahn, Nanotechnology 17, 4072 (2006)
[52] H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, C. V. Thompson, E. A. Fitzgerald, Appl. Phys. Lett. 87, 101908 (2005)
[53] M. Guo, P. Diao, S. Cai, Journal of Solid State Chemistry 178, 1864 (2005)
[54] Y. Sun, N. George Ndifor-Angwafor, D. Jason Riley, M. N. R. Arshfold, Chemical Physics Letters 431, 352 (2006)
[55] X. Liu, X. Hu, H. Cao, R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004)
[56] J.-J. Wu, S.-C. Liu, Adv. Mater., 14, 215 (2002).
[57] T. Okada, B. H. Agung, Y. Nakata, Appl. Phys. A 79, 1417 (2004)
[58] N.O.V. Plank, M.E. Welland et al. Thin Solid Films 516 7218–7222 (2008)
[59] L. Vayssieres, Adv. Mater. 15, 464 (2003)
[60] S. Yamabi, H. Imai, J. Mater. Chem., 12, 3773 (2002) .
[61] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, Chem. Mater. 17, 1001 (2005)
[62] S. Jenekhe, X. L. Chen, Science, 279, 1903 (1998).
[63] G. Hadziioannou, F. von Hutten, Eds., Semiconducting Polymers, Wiley-VCH, Weinheim (2000).
[64] N. S. Sariciftcim S. S. Sun, Organic Photovoltaics, Taylor & Francis, London (2005).
[65] M. T. Rispens, L. Sanchez, E. H. A. Beckers, P. A. van Hal, A. Schenning, E1-ghayoury, E. Peeters, B. Meijer, R. Janssen, J. C. Hummelen, Synth. Met., 135, 801 (2003).
[66] K. M. Coakley, M. D. McGehee, Appl. Phys. Lett. 83, 3380 (2003)
[67] D. C. Olsa, J. Piris, T. R. Collins, S. Shaheen, D. Ginleym, Thin Solid Films, 496, 26 (2006).
[68] A. Tracz, J. K. Jeszka, M. D. Watson, W. Pisula, K. Mullen, T. J. Pakula, Am. Chem. Soc., 125,1682 (2003).
[69] Yi-Ming Chang, Leeyih Wang et al, Solar Energy Materials & Solar Cells, 92 761–765 (2008).
[70] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai and R. D. McCullough,
Macromolecules, 34, 4324 (2001).
[71] R. D. McCullough, United States Patent 6, 166, 172 (2000).
[72] A. Pivrikas, N. S. Sariciftci, G. Juska, R. Osterbacka, Prog.Photovolt., 15, 677 (2007).
[73] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. Leeuw, Nature, 401, 685 (1999).
[74] L. Vayssieres, Adv. Mater. 15, 464(2003)
[75] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350(2001)
[76] 許樹恩,吳泰伯, “X光繞射原理與材料結構分析”,中國材料科學學會 修訂版(1994)
[77] M. Guo et al., Journal of Solid State Chemistry 178, 3210-3215 (2005)
[78] R. D. Scurlock, B. Wang, P. R. Ogilby, J. R. Sheats, R. L. Clough, J. Am. Chem. Soc. 117, 10194(1995)
[79] Seunghyup Yoo, Benoit Domercq et al., Proc. Of SPIE Vol. 5215(2004)
[80] Ning Li, Brian E. Lassiter et al., APPLIED PHYSICS LETTERS 94, 023307 (2009)
[81] Gerhard Gobsch et al., Adv. Funct. Mater. 15, 1193-1196(2005)
[82] Yang Yang, Gang Li et al., J. Mater. Chem., 17, 3126–3140 (2007)
[83] Julia Hsu, Alan Burns. “Effect of Interfacial Polymer Morphology on Solar Cell Performance” (2009)
[84] D. C. Olson et al., J. Phys. Chem. C 111, 16640-16645 (2007)
[85] W.Y. Huang et al., Solar Energy Materials & Solar Cells 93, 382–386 (2009)

QR CODE