簡易檢索 / 詳目顯示

研究生: 呂孟宸
Meng-Chen LU
論文名稱: 改良擬局部柔度法 應用於實際橋梁結構損傷診斷之研究 -以簡支鋼桁架橋為例
Damage Detection of a Simply-supported Steel Truss Bridge Using Modified Pseudo-Local Flexible Method
指導教授: 楊亦東
I-Tung Yang
許丁友
Ting-Yu Hsu
口試委員: 張凱淳
Kai-Chun Chang
張家銘
Chia-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 151
中文關鍵詞: 擬局部柔度法虛應變能橋梁結構損傷診斷
外文關鍵詞: pseudo local flexible method, virtual strain energy, bridge structure, damage detected
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 局部柔度法 (Local flexibility method)係藉由量測模態參數便可判斷梁結構之局部剛度變化。其基本條件為使用一虛力組使應力集中於局部結構區域,而其餘區域為零;為換取較佳之診斷結果,近年有學者開發擬局部柔度法(Pseudo local flexibility method),使應力集中於局部結構區域,其餘區域不為零,利用較少之模態,診斷超靜定梁結構之損傷程度,但其僅能診斷損傷位於某個區域內,未能精確定位至桿件,且僅用於簡易梁結構,尚未運用於複雜結構及實際橋梁,因此本研究擬以虛應變能相關之加權分配方式改良擬局部柔度法,使其能精確定位複雜結構及實際橋梁之損傷位置及嚴重度。
    本研究透過結構受力後各元素之虛應變能比加權分配擬局部柔度法計算出之區域估計剛度比,使其分配至桿件之剛度比。在應用於二維簡支鋼桁架橋之數值模型分析中,發現若桿件的虛應變能相對過低時,其損傷程度不易被準確診斷,若適當增加量測自由度,使得各個桿件均有一定之虛應變能,則可以更為準確的推估損傷程度。此外,另以彎矩平方積分分配區域剛度比,觀察另一種改良方式之適用性及限制,但此方法亦受到數值問題而不穩定。
    此外,本研究將以虛應變能比加權分配區域估計剛度比之方式應用於實際橋梁上,實際橋梁具有3種不同損壞情況,藉由三維橋樑模型的數值分析,已初步驗證了使用擬局部柔度法診斷桁架橋樑損壞的可行性。數值模擬的結果顯示,只需橋樑的前三個模態即可進行損傷定位。因此,應用於實際橋樑時,亦嘗試取前三模態進行,其結果顯示,本研究所提出之方法有其可行性。


    Local flexible method (LFM) estimates local flexibility change of beam structures using modal parameters. Later, the pseudo local flexibility method (PLFM) which successfully detects damage to hyper-static beam structures using fewer modes was proposed. The PLFM eliminates the limitation of virtual forces inducing stress only to the local part of a structure, as is the case with the LFM. However, both LFM and PLFM only estimates local flexibility change of a region, but not that of an element. In other words, the estimated damaged locations are not specified. This study intends to modify the methods by distribute the estimated local flexibility change of a region to elements based on the weighting of virtual strain energy of elements, so that the estimated damaged locations can be more specific.
    The regional estimated flexibility ratio is distributed to each elements based on the weighting of virtual strain energy ratio of each element. The regional estimated flexibility ratio is calculated by PLFM. In the application to a numerical model of a 2D simply-supported steel truss bridge, it is found that if the virtual strain energy of an element is relatively too small, the estimated damage extent of that element is not reliable. If appropriate degrees of freedom are measured, appropriate virtual forces can be applied to these elements. As a result, more accurate damage extent can be estimated when all the elements possess adequate virtual strain energy. In addition, another algorithm which distributes the regional estimated flexibility ratio to each element based on their virtual strain energy is proposed. However, unstable damage extents were obtained due to numerical problems, hence this algorithm is not used in the further study.
    The proposed approach is applied to an experiment of a simply-supported steel truss bridge with three damage cases. The feasibility of the proposed approach is studied via the numerical study of the 3D simply-supported steel truss bridge. It is found that the first three modes are enough to estimate the damage locations. Based on this finding, three modes identified using the measured accelerations of limited degrees of freedom are used in the experimental tests, and the feasibility of proposed approach is verified.

    目錄 摘要 I ABSTRACT II 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 損傷診斷方法 3 1.2.2 局部柔度法及其改進方向 5 1.3 研究內容與架構 5 第二章 理論方法 8 2.1 局部柔度法 9 2.2 擬局度柔度法 14 2.3 以虛應變能比加權分配區域估計剛度比 19 2.4 根據彎矩平方積分分配區域估計剛度比 21 第三章 數值模擬 23 3.1 探討根據虛應變能值與虛應變能比分配剛度比的差異 24 3.2 以虛應變能比加權分配區域估計剛度比 28 3.2.1 連續梁模型描述 28 3.2.2 分析方法 31 3.2.3 數值模擬結果 32 3.2.4 探討區域虛應變能是否集中及增加量測密度對於桿件剛度比準確度的影響 41 3.3 根據彎矩平方積分分配區域估計剛度比 62 3.3.1 簡支梁模型描述 63 3.3.2 分析方法 64 3.3.3 數值模擬結果 65 3.4 應用於二維簡支鋼桁架橋之結果 76 3.4.1 簡支桁架橋模型描述 77 3.4.2 虛力組合(Load configuration)及量測自由度 78 3.4.3 分析方法 80 3.4.4 數值模擬結果 80 3.4.5 探討損傷嚴重程度對於簡支桁架橋估計剛度比及桿件剛度比之影響 103 3.4.6 建模誤差(modeling error) 108 3.5 小結 110 3.5.1 以虛應變能比加權分配區域估計剛度比 111 3.5.2 根據彎矩平方積分分配區域估計剛度比 111 3.5.3 應用於二維簡支鋼桁架橋 113 第四章 以虛應變能加權分配估計剛度比應用於簡支鋼桁架橋 115 4.1 實驗橋梁介紹 115 4.2 擬局部柔度法應用於實驗橋梁 119 4.2.1 虛力組合 120 4.2.2 理論及數值模擬之區域剛度比 121 4.2.3 實驗橋梁之區域剛度比 125 4.3 以虛應變能加權分配實驗橋梁之區域剛度比 127 4.3.1 理論橋梁之桿件剛度比 128 4.3.2 數值模擬橋梁之桿件剛度比 130 4.3.3 實驗橋梁之桿件剛度比 134 4.3.4 探討以虛應變能比加權分配之改良方式對於診斷簡支鋼桁架橋的影響 137 第五章 結論與建議 142 5.1 以虛應變能比加權分配之擬局部柔度法 142 5.1.1 理論 142 5.1.2 數值模擬 142 5.1.3 簡支鋼桁架橋測試驗證 144 5.2 以彎矩積分推估損傷前後剛度之擬局部柔度法 146 5.2.1 理論 146 5.2.2 數值模擬 146 5.3 未來研究方向 147 參考文獻 148 附表 150 附 圖 151

    參考文獻

    [1] 交通部運輸研究所運輸工程組, 「建立台灣地區橋梁管理系統」, 交通部運輸研究所, 2001.
    [2] 中華顧問工程司, 「混凝土、鋼橋一般檢測手冊」, 臺灣省住宅及都市發展局, 1996.
    [3] Y. J. Yana, L. Chengb, Z.Y. Wua, L. H. Yamb, “Development in vibration-based structural damage detection technique,” Mechanical Systems and Signal Processing, pp. 2198-2211, 8 June 2006.
    [4] Toksoy T. and Aktan A. E., “Bridge-Condition Assessment By Modal Flexibility,” Experimental Mechanics, p. 271–278., Vol. 34 1994.
    [5] Bernal D. , “Load Vectors for Damage Localization,” Journal of Engineering Mechanics, pp. 7-14., Vol. 128, No. 1, 2002.
    [6] Reynders E. and De Roeck G. , “A Local Flexibility Method for Vibration-basedDamage Localization and Quantification.,” Journal of Sound and Vibration, pp. 2367-2383., Volume 329, Issue 12,2010.
    [7] 蕭勝元, 「改進局部柔度法於梁結構損傷診斷之研究」, 國立台北科技大學, 台北, 2013.
    [8] T. Y. Hsu, W. I. Liao and S. Y. Shiao, “A pseudo local flexibility method for damage detection,” Journal of Structural Control & Health Monitoring, pp. Volume 22, Pages 682–693, 2015.
    [9] J. S. Przemieniecki, Theory_of_Matrix_Structural_Analysis, America: Library of Congress Catalog Card Number 67-19151, 1986.
    [10] Mottershead J. E. and Friswell M. I. , Finite Element Model Updating in Structural Dynamics, Springer Netherlands, 1995.
    [11] Song M. , Behmanesh I. , Moaveni B. and Papadimitriou C., Modeling Error Estimation and Response Prediction of a 10-Story Building Model Through a Hierarchical Bayesian Model Updating Framework, Front. Built Environ, 2019.
    [12] K. C. Chang, C. W. Kim, “Modal-parameter identification and vibration-based damage detection,” Engineering Structures 122, pp. 156-173, 2016.

    無法下載圖示 全文公開日期 2024/10/29 (校內網路)
    全文公開日期 2031/10/29 (校外網路)
    全文公開日期 2031/10/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE