簡易檢索 / 詳目顯示

研究生: 黃文政
Wen-Jheng Huang
論文名稱: 可自我調頻吸振器之研究
The Study of Self-Tuning Vibration Absorber
指導教授: 黃世欽
Shyh-Chin Huang  
口試委員: 林高安
Kao-An Lin
黃以玫
Yi-Mei Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 調頻吸振器壓電材料
外文關鍵詞: self-tuning, absorber, PZT
相關次數: 點閱:178下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文以壓電材料做為力電轉換媒介,研發一可自我調頻吸振器(Self-Tuning Vibration Absorber, STVA),此吸振器係由懸臂樑貼覆兩片壓電材料所構成,分別作為感測器與致動器之用。當主系統承受一簡諧外力時,壓電感測器因正壓電效應之影響產生一交流電訊號,藉此訊號經控制器判定外力頻率,進而施予壓電致動器一對應電壓,使其產生一位移變化,但受限於結構的拘束,迫使其產生一內應力之效應。於自由振動分析可知,因內應力效應之影響,使STVA的固有頻率隨之改變,同時本文將內應力等效成作用於樑上彎矩之變化,從強迫振動分析可知,因彎矩效應之影響,主系統響應會因此改變,故本文藉此內應力之效應改變STVA之頻率,使STVA具有調頻之功能。
於理論推導方面,先建立自我調頻吸振器之模型,續將能量式加入壓電材料之力電轉換效應,運用模態展開法將能量式予以離散化,結合壓電致動器之彎矩-電壓關係式,推導出STVA系統運動方程式,並驗證本文所採用懸臂樑之自然模態的準確性。在數值模擬方面,分析壓電材料於不同貼覆位置、厚度、長度及電壓對STVA在調頻與吸振上的影響。於調頻系統方面,由壓電感測器得知外力頻率大小,以此頻率值為依據供給壓電致動器之對應電壓,使STVA頻率與外力頻率一致,達成主系統響應衰減之目標。研究中應根據理論分析實際製作一STVA裝置於主系統上,驗證STVA在吸振方面的效果及其可行性。


In this research, a self-Tuning Vibration Absorber (STVA) is developed. STVA is composed of a beam with two PZT patches, one for sensing and one for actuating. The theory of absorber is to make the DVA natural frequency is coincide with the external excitation. Yet, due to environmental nature and manufacture error, the excitation is frequently deviated from a steady frequency. If the absorber contains the self-tuning ability, the absorption can be remaining at high effectiveness. The concept of STVA is as the beam vibrates the sensor outputs an alternating voltage, and with appropriate control algorithms, an electrical power is applied to the actuator such that the natural frequency of STVA is changed.
In the analysis, the parameters such as PZT location, thickness, length are discussed. The results show that the best location for sensor is near the fixed end but it is at the free end for actuator. The length and thickness of PZT actuator should be increased up to a certain ratio not unlimited. Finally, experiments are performed to verity the self-tuning ability. It shows that this composition is applicable but the tuning range is yet not as large as analytical prediction.

論 文 摘 要 I ABSTRACT III 誌 謝 IV 目 錄 VI 圖 目 錄 IX 表 目 錄 XII 符 號 索 引 XIII 第一章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 5 1.3 文章架構 6 第二章 壓電理論簡介 7 2.1 壓電效應 7 2.2 極化處理 10 2.3 壓電材料本構方程式 11 第三章 自我調頻吸振器之理論分析 13 3.1 STVA之近似解 14 3.1.1 STVA之能量式 15 3.1.2 壓電致動器之彎矩-電壓關係式 21 3.1.3 STVA之運動方程式 23 3.2 STVA之正解 25 3.3 近似解與正解求解STVA之固有頻率比較 34 第四章 自我調頻吸振器之設計分析 36 4.1 參數對STVA調頻之探討 36 4.1.1 壓電感測器貼覆位置之影響 37 4.1.2 壓電致動器貼覆位置之影響 38 4.1.3 電壓對STVA頻率之影響 40 4.1.4 壓電致動器長度對調頻之影響 43 4.1.5 壓電致動器厚度對調頻之影響 45 4.2 STVA之案例探討 46 第五章 實驗分析 49 5.1 實驗設備介紹 49 5.2 STVA之吸振實驗 55 5.2.1 STVA之共振頻率量測 55 5.2.2 具STVA之主系統頻率響應量測 57 5.3 STVA之調控準則 58 5.4 STVA之系統調頻實驗 61 5.4.1 調頻之可行性實驗 61 5.4.2 自我調頻吸振器之吸振實驗 62 第六章 結論與未來研究方向 66 6.1 結論 66 6.2 未來展望 69 參考文獻 71 附錄A 74

1. J. P. Den Hartog, Mechanical Vibration, 4th edition, McGraw-Hill, New York(1956).
2. A. G. Thompson, “Auxiliary Mass Throw in a Tuned and Damped Vibration Absorber,” Journal of Sound and Vibration, Vol.70, pp. 481-486(1980).
3. F. M. Lewis, “The Extended Theory of the Viscous Vibration Damper,” Journal of Applied Mechanics, pp. 377-382(1955).
4. J. C. Snowdon, “Dynamic Vibration Absorbers That Have Increased Effectiveness,” Journal of Engineering for Industry, pp.940-945(1974).
5. J. E. Brock, “A Note on the Damped Vibration Absorber,” Journal of Applied Mechanics, pp. A284(1946).
6. V. A. Bapat and P. Prabhu, “Optimum Design of Lanchester Damper for a Viscously Damped Single Degree of Freedom System Using Minimum Force Transmissibility Criterion,” Journal of Sound and Vibration, Vol. 67, pp. 113-119(1979).
7. M. Z. Ren, “A Variant Design of the Dynamic Vibration Absorber,”Journal of Sound and Vibration, Vol. 254, pp.762-770(2001).
8. K. Liu and J. Liu, “The Damped Dynamic Vibration Absorber: Revisited and New Result,”Journal of Sound and Vibration, Vol.284, pp. 1181-1189(2005).
9. Dosch, Jeffrey J., Inman, Daniel J. , “A Self-Sensing Piezoelectric Actuator For Collocated Control,”Journal of Intelligent Materials System and Structures, Vol.3, pp.166-185(1992).
10. H.A. Sodano, G. Park, and D.J.inman, “Estimation of Electric Charge Output for Piezoelectric Energy Harvesting,” Strain, 40, 49-58(2004).
11. 黃志仁,“具有壓電材料之樑之響應研究,”,碩士論文,國立成功大學碩士學位論文(2005)。
12. W.J. Wu, Y.Y. Chen, B.S. Lee, J. J. He and Y.T. Peng, “ Tunable Resonant Frequency Power Harvesting Devices,” Proceedings of Smart Structures and Materials, Vol.6169, 61690A(2006).
13. V.R. Challa, M.G. Prasad and F.T. Fisher, “High Efficiency Energy Harvesting Device with Magnetic Frequency Tuning,” Proceedings of Sensord and Structures Technologies for Civil, Mechanical, and Aerospace Systems, Vol.6932, 69323Q(2008).
14. V.R. Challa, M.G. Prasad, Y. shi and F.T. Fisher, “A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tenability,” Smart Materials and Structures, Vol.17, pp.015035(2008).
15. 台灣大學電機系電子實驗講義(2006).
16. http://www.aurelienr.com/electronique/piezo/piezo.pdf
17. 周卓明,壓電力學,全華科技圖書股份有限公司(2003)。
18. 吳朗,電子陶瓷:壓電陶瓷,全欣科技圖書股份有限公司(1994)。
19. R.C. Hibbler, Mechanics of Materials, 6th edition, Pearson Prentice Hall(2005).
20. 林忠憲,“壓電懸臂樑式靜態力量感測器之設計與製作,”,碩士論文,國立成功大學(2008)。
21. J. M. Renno and D. J. Inman, “An Experimentally Verified Model Of a Membrance Mirror Strip Actuated Using a Piezoelectric Bimorph ,” Journal of Vibration and Acoustics, Vol. 129, pp. 631-640(2007).
22. 賴炳佑,“具拘束阻尼層部份覆蓋樑之振動及阻振分析,”,碩士論文,國立台灣科技大學(2004)。

QR CODE