簡易檢索 / 詳目顯示

研究生: 陳建宇
Chien-Yu Chen
論文名稱: 水溶性藍藻蛋白-寡聚糖類接枝之物性探討
Physical characterization of soluble cyanophycin-oligosaccharide conjugates
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 林析右
Shi-Yow Lin
方翠筠
Tsuei-Yun Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 藍藻蛋白溫敏性高分子上限臨界溶解溫度
外文關鍵詞: cyanophycin, thermo-responsive polymer, UCST
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

溫敏性高分子(Thermo-responsive polymers)是一種被稱為智能的材料,因為能夠靠著溫度變化改變表面的親水基與疏水基進行相變化,進而改變形狀與粒徑,應用範圍廣泛,例如在藥物傳遞、基因傳遞、組織工程、生物分離方面都有顯著的成果。
本研究嘗試利用具有生物相容性且成本較低的麥芽糖、麥芽三糖、麥芽糊精作為修飾由在生理條件下具有上限臨界溶解溫度(Upper critical solution temperature, UCST)的溫敏性高分子水溶性藍藻蛋白。經過紅外線光譜確認接枝,再以TNBSA測定與凝膠滲透層析儀計算接枝比例。由於水溶性藍藻蛋白相轉移點接近冰點較不利於應用,藉由接枝糖類使相轉移溫度上升,結果顯示接枝麥芽糖與麥芽三糖使得水溶性藍藻蛋白溶解度提升,導致相轉移點消失無法應用,而接枝麥芽糊精成功的增加分子內氫鍵,使相轉移點提高。我們探討在生理條件下不同的酸鹼值與濃度的條件來增加應用的發展性。我們利用穿透式電子顯微鏡確認粒子在37oC形狀為球狀,並且發現大多粒子粒徑落在300奈米以下。
本實驗目標期待這一系列新穎的溫敏性高分子能成功地做為藥物釋放載體有其潛在應用性。


Thermo-responsive polymer is one kind of smart materials. The changes in temperature can alter the hydrophilic−hydrophobic surface conduct to induce the phase change, and thereby alter polymer shapes. The applications of thermo-responsive polymers have been proposed and demonstrated in different fields, such as temperature-triggered drug release, gene delivery, tissue engineering and bio-separation.
In this study we used maltose, maltotriose and maltodextrin to modify water soluble cyanophycin, which has an upper critical solution temperature (UCST) under the physiological condition. The grafting ratios of cyanophycin-oligosaccharide conjugates were determined by colorimetry and gel permeation chromatography (GPC). Fourier transform infrared spectroscopy (FT-IR) was used to analyze the functional groups of the conjugates. Grafting oligosaccharides was found to enhance the phase transition point. The results showed that the grafting of maltose and maltotriose enhanced the solubility of cyanophycin which led to the disappearance of the phase transition point. The grafting of maltodextrin increased intramolecular hydrogen bonds and caused the increase in the phase transition point. We used a transmission electron microscope to confirm the particle sizes at 37oC.
This study showed that cyanophycin-oligosaccharide has the potential to be applied as a drug delivery system.

目錄 摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 IX 表目錄 X 第一章緒論 1 第二章文獻回顧 2 2.1 溫敏性高分子 2 2.1.1 溫敏性高分子的種類 2 2.1.2溫敏性高分子的熱力學性質 3 2.1.2.1UCST高分子的相轉移溫度的調整 4 2.1.3溫敏性高分子的線團狀-球狀轉換 5 2.1.4溫敏性高分子物性特徵 5 2.1.4.1霧點 5 2.1.4.2滯遲現象 6 2.1.5臨界聚集濃度 6 2.2藍藻蛋白 7 2.2.1藍藻蛋白結構與生產 7 2.2.2經基因重組方式生產藍藻蛋白 8 2.3麥芽糖 10 2.4麥芽三糖 11 2.5麥芽糊精 12 第三章實驗材料與方法 13 3.1藥品清單 13 3.2藥品配置 15 3.2.1菌株培養 15 3.2.1.1二合一抗生素 15 3.2.1.2Luria broth medium plate(LB medium plate ) 15 3.2.1.3Luria broth medium (LB medium) 15 3.2.1.4Terrific Broth medium (TB medium) 16 3.2.1.5Phosphate 16 3.2.2SDS-PAGE 16 3.2.2.10.5M Tris-HCl buffer ( pH=6.8 )上層膠 16 3.2.2.21.5M Tris-HCl buffer ( pH=8.8 )下層膠 16 3.2.2.310% SDS (sodium dodecyl sulfate) 16 3.2.2.420% APS (ammonium persulfate) 16 3.2.2.510×protein running buffer 16 3.2.2.6proteinstaining buffer 17 3.2.2.7protein de-staining buffer 17 3.2.2.8protein preserving buffer 17 3.2.3TNBS assay 17 3.2.3.1Reaction buffer 17 3.2.3.20.01%TNBSA 17 3.2.4合成用溶劑 17 3.2.4溶解度與霧點溶劑 18 3.2.4.11×PBS (phosphate-buffer saline) 18 3.2.4.20.1M pH=3、pH=4、pH=5.5 citrate acid buffer 18 3.2.4.30.1M pH=6、pH=8 phosphate buffer 18 3.2.4.40.1M pH=9 borate buffer 18 3.2.5TEM樣品配製 18 3.2.5.1磷鎢酸染劑配製 18 3.2.5.2樣品溶液配製 19 3.3實驗儀器 19 3.4實驗步驟 20 3.4.1 菌株培養 20 3.4.1.1將菌株畫盤於LB medium plate 20 3.4.1.2將菌株轉養至2 mL LB medium 20 3.4.1.3將菌株轉養至60 mL LB medium 20 3.4.1.4將菌液轉養至150 mL TB medium 21 3.4.1.5誘導 21 3.4.1.6收菌 21 3.4.2 純化藍藻蛋白 21 3.4.2.1泡菌 21 3.4.2.2破菌 22 3.4.2.3水溶性藍藻蛋白純化 22 3.4.2.4非水溶性藍藻蛋白純化 22 3.4.3SDS-PAGE 23 3.4.3.1鑄膠 24 3.4.3.2樣品配置 24 3.4.3.3跑膠 24 3.4.4藍藻蛋白與糖類接枝 25 3.4.5藍藻蛋白與糖類接枝官能基鑑定 29 3.4.6藍藻蛋白與醣類接枝產物接枝程度鑑定 29 3.4.7分子量鑑定 30 3.4.8藍藻蛋白溶解度測試 31 3.4.9藍藻蛋白與醣類接枝產物霧點分析 31 3.4.9.1樣品配製 31 3.4.9.2 分光光度計 32 3.4.9.3霧點判斷 32 3.4.10水溶性藍藻蛋白接枝寡聚糖產物粒徑分析 33 3.4.10.1穿透式電子顯微鏡 33 3.4.10.2磷鎢酸 33 第四章結果與討論 34 4.1藍藻蛋白-糖類接枝產物製備與分析 34 4.1.1藍藻蛋白與糖類接枝產物接枝程度定量 34 4.1.2藍藻蛋白與糖類接枝官能基鑑定 38 4.1.3分子量定量 42 4.2物性分析 44 4.2.1水溶性藍藻蛋白不同pH值溶解度測試 44 4.2.2溫敏性質分析 45 4.2.2.1水溶性藍藻蛋白的溫敏性 45 4.2.2.2藍藻蛋白-糖類霧點測試 48 4.2.2.3酸鹼影響UCST之行為 54 4.2.2.4遲滯現象 56 4.2.3TEM粒徑觀察 59 結論 61 附錄 62 參考文獻 67

1. Seuring, J. and S. Agarwal, First Example of a Universal and Cost-Effective Approach: Polymers with Tunable Upper Critical Solution Temperature in Water and Electrolyte Solution. Macromolecules, 2012. 45(9): p. 3910-3918.
2. miscibility gap. 2009.
3. Ward, M.A. and T.K. Georgiou, Thermoresponsive Polymers for Biomedical Applications. Polymers, 2011. 3(4): p. 1215-1242.
4. Klouda, L. and A.G. Mikos, Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm, 2008. 68(1): p. 34-45.
5. Kim, B., D. Hong, and W.V. Chang, LCST and UCST double-phase transitions of poly(N-isopropylacrylamide-co-2-acrylamidoglycolic acid)/poly(dimethylaminoethyl methacrylate) complex. Colloid and Polymer Science, 2014. 293(3): p. 699-708.
6. Huggins, M.L., Solutions of Long Chain Compounds. The Journal of Chemical Physics, 1941. 9(5): p. 440.
7. Stryuk, S. and B.A. Wolf, Chain Connectivity and Conformational Variability of Polymers: Clues to an Adequate Thermodynamic Description of their Solutions, 3. Macromolecular Chemistry and Physics, 2003. 204(16): p. 1948-1955.
8. Seuring, J. and S. Agarwal, Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun, 2012. 33(22): p. 1898-920.
9. Quiroz, F.G. and A. Chilkoti, Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat Mater, 2015. 14(11): p. 1164-71.
10. Chen, L., et al., Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer, 2000. 41(1): p. 141-147.
11. Lutz, J.-F., Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(11): p. 3459-3470.
12. Southall, N.T., K.A. Dill, and A.D.J. Haymet, A View of the Hydrophobic Effect. The Journal of Physical Chemistry B, 2002. 106(3): p. 521-533.
13. Maji, T., et al., Dual-Stimuli-Responsivel-Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules, 2015. 48(14): p. 4957-4966.
14. Wu, C. and X. Wang, Globule-to-Coil Transition of a Single Homopolymer Chain in Solution. Physical Review Letters, 1998. 80(18): p. 4092-4094.
15. Biswas, Y., et al., Tunable doubly responsive UCST-type phosphonium poly(ionic liquid): a thermosensitive dispersant for carbon nanotubes. Polym. Chem., 2016. 7(4): p. 867-877.
16. Yan, M., B. Li, and X. Zhao, Determination of critical aggregation concentration and aggregation number of acid-soluble collagen from walleye pollock (Theragra chalcogramma) skin using the fluorescence probe pyrene. Food Chemistry, 2010. 122(4): p. 1333-1337.
17. Jain, N., et al., Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants. Langmuir, 2004. 20(20): p. 8496-503.
18. Trivedi, R. and U.B. Kompella, Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond), 2010. 5(3): p. 485-505.
19. Zhang, X., et al., Synthesis and characterization of thermo- and pH-responsive double-hydrophilic diblock copolypeptides. Biomacromolecules, 2007. 8(11): p. 3557-67.
20. Könst, P.M., Production of nitrogen containing chemicals from cyanophycin. 2011, s.n.]: [S.l.
21. Wingard, L.L., et al., Cyanophycin Production in a Phycoerythrin-Containing Marine Synechococcus Strain of Unusual Phylogenetic Affinity. Applied and Environmental Microbiology, 2002. 68(4): p. 1772-1777.
22. Ziegler, K., et al., Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi- L-arginyl-poly- L-aspartate (cyanophycin). European Journal of Biochemistry, 1998. 254(1): p. 154-159.
23. Mooibroek, H., et al., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology, 2007. 77(2): p. 257-267.
24. Frommeyer, M., K. Bergander, and A. Steinbüchel, Guanidination of Soluble Lysine-Rich Cyanophycin Yields a Homoarginine-Containing Polyamide. Applied and environmental microbiology, 2014. 80(8): p. 2381-2389.
25. Neumann, K., et al., Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J, 2005. 3(2): p. 249-58.
26. Voss, I., et al., Identification of the Anabaena sp. strain PCC7120 cyanophycin synthetase as suitable enzyme for production of cyanophycin in gram-negative bacteria like Pseudomonas putida and Ralstonia eutropha. Biomacromolecules, 2004. 5(4): p. 1588-95.
27. Koop, A., et al., Identification and Localization of Cyanophycin in Bacteria Cells via Imaging of the Nitrogen Distribution Using Energy-Filtering Transmission Electron Microscopy. Biomacromolecules, 2007. 8(9): p. 2675-2683.
28. Aboulmagd, E., F.B. Oppermann-Sanio, and A. Steinbchel, Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Archives of Microbiology, 2000. 174(5): p. 297-306.
29. Oppermann-Sanio, F.B. and A. Steinbüchel, Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften, 2002. 89(1): p. 11-22.
30. Verma, M.L., Microbial Biosynthesis Of Biopolymers And Applications In The Biopharmaceutical, Biomedical And Food Industries.
31. Quigley, G.J., A. Sarko, and R.H. Marchessault, Crystal and molecular structure of maltose monohydrate. Journal of the American Chemical Society, 1970. 92(20): p. 5834-5839.
32. Roth, K. and W. Russey, Our Daily Bread — Part 3. ChemViews, 2013.
33. David W. Ball, J.W.H.a.R.J.S., The Basics of General, Organic, and Biological Chemistry, v. 1.0. March 2011
34. Hii, S.L., et al., Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res, 2012. :p. 921362.
35. Shanmugam, S., Enzyme Technology. 2009: p. P140.
36. Fang, Y., R. Takahashi, and K. Nishinari, Protein/polysaccharide cogel formation based on gelatin and chemically modified schizophyllan. Biomacromolecules, 2005. 6(6): p. 3202-8.
37. Hilliard, J.J., M.R. Maurizi, and L.D. Simon, Isolation and Characterization of the Phage T4 PinA Protein, an Inhibitor of the ATP-dependent Lon Protease ofEscherichia coli. Journal of Biological Chemistry, 1998. 273(1): p. 518-523.
38. Cordes, E.H. and W.P. Jencks, On the Mechanism of Schiff Base Formation and Hydrolysis. Journal of the American Chemical Society, 1962. 84(5): p. 832-837.
39. Cayot, P. and G. Tainturier, The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination. Anal Biochem, 1997. 249(2): p. 184-200.
40. Rödel, W., G. Rendina: Experimental Methods in Modern Biochemistry. 333 Seiten, 46 Abb., 65 Tab. Verlag W. B. Saunders Company, Philadelphia, London, Toronto 1971. Preis: 3,65 £. Food / Nahrung, 1972. 16(7): p. 807-808.
41. Brown, G.M., et al., Dodecatungstophosphoric acid hexahydrate, (H5O2+)3(PW12O403−). The true structure of Keggin's `pentahydrate' from single-crystal X-ray and neutron diffraction data. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1977. 33(4): p. 1038-1046.
42. Jennings, K.R., Spectrometric identification of organic compounds (Fifth Edition) R. M. SILVERSTEIN, G. C. BASSLER AND T. C. MORRILL. Wiley, New York, 1991. No. of pages: 430. ISBN 0471 63404 2. Price: £50.25, $76.10. Organic Mass Spectrometry, 1991. 26(9): p. 813-813.
43. Balu, R., et al., An16-resilin: an advanced multi-stimuli-responsive resilin-mimetic protein polymer. Acta Biomater, 2014. 10(11): p. 4768-77.
44. Tsavas, P., et al., Phase Equilibrium Calculations in Aqueous and Nonaqueous Mixtures of Sugars and Sugar Derivatives with a Group-Contribution Model. Industrial & Engineering Chemistry Research, 2004. 43(26): p. 8391-8399.
45. Lu, Y., et al., Origin of hysteresis observed in association and dissociation of polymer chains in water. Phys Chem Chem Phys, 2010. 12(13): p. 3188-94.
46. De, J., Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 2008: p. 133.

無法下載圖示 全文公開日期 2021/08/17 (校內網路)
全文公開日期 2036/08/17 (校外網路)
全文公開日期 2036/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE