簡易檢索 / 詳目顯示

研究生: 牟嘉鴻
Chai-Hung Mou
論文名稱: 新式微波分枝耦合器、雙頻帶環形耦合器及寬頻被動隔離元件之研製
Development of Novel Microwave Branch-Line Coupler, Dual-Band Rat-Race Coupler and Wideband Passive Isolation Component
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 瞿大雄
Tah-Hsiung Chu
黃建彰
Chien-Chang Huang
王蒼容
Chun-Long Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 分枝耦合器雙頻帶環形耦合器寬頻被動隔離元件
外文關鍵詞: Branch-Line Coupler, Dual-Band Rat-Race Coupler, Wideband Passive Isolation Component
相關次數: 點閱:335下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要係使用新式電路結構實現微波分枝耦合器、雙頻帶環形耦合器及被動隔離元件。分枝耦合器部分,本論文使用集總非對稱E型結構設計分枝耦合器,以提供較佳之操作頻寬。但非對稱E型結構使用過多集總元件,論文中進一步使用元件數較少的非對稱π及T型結構取代,有效地減少總集總元件個數,降低製作成本。雙頻帶環形耦合器部分,本論文主要係使用L型結構設計雙頻帶環形耦合器,L型結構係由一段傳輸線及串聯集總共振器所組成,可提供雙頻操作特性。基於該電路架構,本論文研製五種不同型態的環形耦合器,其中微型化雙頻帶環形耦合器之電路面積縮小為傳統電路之10 %。被動隔離元件部分,本論文使用開槽耦合微帶線耦合器研製寬頻被動隔離元件,該元件之Tx及Rx埠間30 dB量測隔離度頻寬為44.9 %。相較於商用元件,本論文所設計之被動隔離元件可提供較寬頻的反射損失、較佳的穿透損失及較寬頻的隔離度。


The aim of this thesis is to develop microwave branch-line couplers, dual-band rat-race couplers, and the passive isolation component based on new circuits structures. For the branch-line coupler design, asymmetrical E-equivalent sections are used to design lumped-element branch-line couplers with the improvement of the return loss bandwidth. To reduce the number of lumped-elements, in this thesis, the asymmetrical E-equivalent section is further evolved into asymmetrical π- and T- equivalent structures for the branch-line coupler design. For the dual-band rat-race coupler design, L sections are exploited to design dual-band rat race couplers. The L section is composed of a transmission line and a series LC resonator to have the dual-band property. By using L sections, this thesis develops five types of dual-band rat-race couplers. The miniaturized dual-band coupler only occupies a 10 % circuit size of the conventional one at the center frequency of the 1st passband. For the passive isolation component design, three sets of diamond-shape slot-coupled microstrip lines are integrated into a passive isolation component. Since the slot-coupled microstrip can provide a wideband and accurate quadrature phase difference, the developed passive isolation component can effectively improve the isolation level and bandwidth between transmitting and receiving ports. The developed isolation component has a 30 dB isolation of 44.9 %.

摘要 i Abstract ii 目錄 iii 第一章 緒論 1 1-1 研究動機 1 1-1-1 集總分枝耦合器 1 1-1-2 雙頻帶環形耦合器 2 1-1-3 被動隔離元件 5 1-2 章節說明 5 第二章 使用非對稱集總結構設計分枝耦合器 7 2-1 使用非對稱E型結構設計分枝耦合器 7 2-2 使用非對稱π及T型結構設計分枝耦合器 16 第三章 使用L型結構研製雙頻帶環形耦合器 24 3-1 L型結構之設計方法 26 3-2 使用L型結構設計雙頻帶環形耦合器 31 3-2-1研製Type-A雙頻帶環形耦合器 31 3-2-2研製Type-B雙頻帶環形耦合器 36 3-2-3研製Type-C及Type-D雙頻帶環形耦合器 43 3-2-4研製Type-E雙頻帶環形耦合器 52 第四章 開槽耦合微帶線耦合器設計寬頻被動隔離元件 58 第五章 結論 66 參考文獻 68

[1] D. M. Pozar, Microwave Engineering, 3rd ed. New York: John Wiley & Sons, 2005.
[2] D. Kuylenstierna, S. E. Gunnarsson and H. Zirath, “Lumped-element quadrature power splitter using mixed right/left-handed transmission Lines”, IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2616 - 2621, Aug. 2005.
[3] S. J. Parisi, “180° lumped element hybrid,” in IEEE MTT-S Int. Microwave Symp. Dig., 1989, pp. 407–410.
[4] R. Vogel, “Analysis and design of lumped- and lumped-distributed element directional couplers for MIC and MMIC applications,” IEEE Trans. Microw. Theory Tech., vol. 40, pp. 253–262, Feb. 1992.
[5] F. Gong, C. Li and J. DeGroat, “Analysis and design of a wideband lumped-element quadrature directional coupler for complementary metal-oxide semiconductor implementation”, IET Microwaves Antennas & Propag., vol. 5, no. 4, pp. 443 – 449, Mar. 2011.
[6] Y.-C. Chiang and C.-Y. Chen, “Design of a wide-band lumped-element 3-dB quadrature coupler”, IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 476–479, Mar. 2001..
[7] I.-H. Lin, M. DeVincentis, C. Caloz, and T. Itoh, “Arbitrary dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1142–1149, Apr. 2004.
[8] K.-K. M. Cheng and F.-L. Wong, “A novel rat race coupler design for dual-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 521–523, Aug. 2005.
[9] K.-K. M. Cheng and F.-L. Wong, “Dual-band rat-race coupler design using tri-section branch-line,” Electronics Lett., vol. 43, pp. 41–42, Mar. 2007.
[10] C. P. Kong and K.-K. M. Cheng, “Dual-band rat-race coupler with bandwidth enhancement,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp.1559-1562.
[11] C.-L. Hsu, J.-T Kuo, and C.-W. Chang, “Miniaturized dual-band hybrid couplers with arbitrary power division ratios,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 149–156, Jan. 2009.
[12] K.-S. Chin, K.-M. Lin, Y.-H. Wei, T.-H. Tseng, and Y.-J. Yang, “Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 1213-1221, May 2010.
[13] C.-L. Hsu, C.-W. Chang, and J.-T Kuo, “Design of dual-band microstrip rat-race coupler with circuit miniaturization,” in IEEE MTT-S Int. Microwave Symp. Dig., 2007, pp.177-180.
[14] Y.-C. Chiou, J.-T. Kuo, and C.-H. Chan, “New miniaturized dual-band rat-race coupler with microwave C-sections,” in IEEE MTT-S Int. Microwave Symp., Boston, Massachusetts, USA, June 7-12, 2009, pp. 701 - 704.
[15] C.-Y. Wu, Y.-C. Chiou and J.-T. Kuo, “Dual-band rat-race coupler with arbitrary power division using microwave C-sections,” in Proc. Asia-Pacific Microw. Conf., Singapore, Dec., 2009.
[16] G.-Q. Liu, L.-S. Wu, and W.-Y. Yin, “Miniaturised dual-band rat-race coupler based on double-sided parallel stripline,” Electro. Lett., vol. 47, no. 14, pp. 800-802, Jul. 2011.
[17] S.-C. Shin, J.-Y. Huang, K.-Y. Lin, and H. Wang, “A 1.5-9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 797-799, Dec. 2008.
[18] S. W. Y. Mung and W. S. Chan, “Novel active quasi-circulator with phase compensation technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 800-802, Dec. 2008.
[19] Y. Zheng and C. E. Saavedra, “Active quasi-circulator MMIC using OTAs,” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 218-210, Apr. 2009.
[20] S. K. Cheung, T. P. Halloran, W. H. Weedon, and C. P. Caldwell, “MMIC-based quadrature hybrid quasi-circulators for simultaneous transmit and receive,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 489-497, Mar. 2010.
[21] C.-H. Tseng and C.-L. Chang, “A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures,” IEEE Trans. Microw. Theory Tech., vol. 60, pp. 2085-2092, July 2012.
[22] D. Kuylenstierna, S. E. Gunnarsson and H. Zirath, “Lumped-element quadrature power splitter using mixed right/left-handed transmission Lines”, IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2616 - 2621, Aug. 2005.
[23] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon., Hybrids, Manufact. Technol., vol. 15, pp. 483–490, Aug. 1992.
[24] C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1637–1647, Jun. 2004.
[25] T. Tanaka, K. Tsunoda, and M. Aikawa, “Slot-coupled directional couplers between double-sided substrate microstrip lines and their applications,” IEEE Trans. Microw. Theory Tech., vol. 36, pp. 1752-1757, Dec. 1988.
[26] A. M. Abbosh and M. E. Bialkowski, “Design of compact directional couplers for UWB applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 189-194, Feb. 2007.
[27] A. M. Abbosh, “Ultra-wideband phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1935-1941, Sep. 2007.
[28] A. M. Abbosh, “Planar bandpass filters for ultra-wideband applications,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 2262-2269, Oct. 2007.
[29] A. M. Abbosh, “Design of ultra-wideband three-way arbitrary power dividers,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 194-201, Jan. 2008.
[30] C.-H. Tseng and Y.-C. Hsiao, “A new broadband Marchand balun using slot-coupled microstrip lines,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 157-159, Mar. 2010.

QR CODE