簡易檢索 / 詳目顯示

研究生: 黃建雄
Chien-hsiu Huang
論文名稱: 以銅合金為端子材質的微機電連接器的設計與製造
Design and Fabrication of a MEMS Electrical Connector with Copper Alloy Contacts
指導教授: 李維楨
Wei-chen Lee
口試委員: 趙振綱
Ching-kong Chao
周振嘉
Chen-chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: 微機電系統連接器銅合金微成形技術
外文關鍵詞: MEMS, connector, copper alloy, micro-forming
相關次數: 點閱:246下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子封裝對電氣連接器端子之間距離的要求,已經到了傳統沖壓和塑模技術的極限。而以微機電的技術來製造連接器方能滿足如此嚴格的要求。因此,開發微機電連接器是有其必要性的。本論文的目的即是開發一可分離的微機電連接器,此連接器的端子所使用的材質為像黃銅、磷青銅和鈹銅之類的銅合金。銅合金的機械性質較純銅為佳,因此可容許端子有更多的撓度而不會產生永久變形。
    由本研究可證明使用銅合金做為端子材質的微機電連接器是可以被製造出來的。於製作過程中發現,在蝕刻過程中,蝕刻溫度和KOH濃度會影響蝕刻深度及表面粗糙度:蝕刻溫度較高以及KOH濃度較低時所得到的蝕刻深度愈深; KOH濃度較高時所得的表面粗糙度愈好。濺鍍Ta薄膜時,時間和DC功率對薄膜成長有明顯的影響。而使用環氧樹脂進行接合時,溫度愈高所需要的接合的時間愈短。在蝕刻過程中,鈹銅合金端子加強光阻的保護有助於端子避免再被蝕刻,以保持連接器的完整性。


    The requirement for the pitch of the contacts of an electrical connector is getting to a very small scale so that traditional stamping and injection molding techniques cannot be employed to make it. A MEMS connector, which is a connector made by using MEMS technology, will be able to meet such a stringent requirement. Therefore, to develop MEMS connectors is definitely necessary. The objective of this project is to develop a separable MEMS connector with copper alloy contacts. Copper alloys, such as brass and phosphor bronze and beryllium copper, have better mechanical properties than pure copper, so the contacts made of copper alloys can allow more deflection without permanent deformation.
    It has been shown in the research that a MEMS connector with copper alloy contacts is feasible. During the manufacture processes, it is found that the etching temperature and the KOH concentration can greatly affect the etching rate and the surface roughness. The etching rate becomes higher when the etching temperature is raised and the KOH concentration is decreased. It is also found that the surface roughness can be improved when the KOH concentration is increased. As Ta being sputtering, both time and the DC power are significant factors for the Ta film growth. In the etching process, the copper alloy contacts need to be protected by the photoresist to prevent it from further etching. All the results are useful for fabricating a MEMS connector.

    中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 圖 索 引 VIII 表 索 引 XII 第一章 緒論 1 1.1前言 1 1.2 研究計畫之背景及動機 4 1.3 文獻回顧 6 1.4 論文架構 12 第二章 基礎理論 13 2.1 銅導線的發展 13 2.2 擴散阻隔層 13 2.2.1 簡介 13 2.2.2 擴散阻隔層之比較 15 2.2.3 總結 18 2.3 濺鍍製程 19 2.3.1 濺鍍原理 19 2.3.2 反應性直流與射頻磁控濺鍍原理 20 2.4 微影製程 23 2.4.1 基本原理 23 2.4.2 光阻 25 2.4.3 表面清洗 26 2.4.4 塗底 26 2.4.5 光阻塗佈 26 2.4.6 軟烤 27 2.4.7 曝光 27 2.4.8 顯影 30 2.4.9 硬烤 31 2.4.10 去光阻 31 2.5 蝕刻製程 32 2.5.1 濕式蝕刻 32 2.5.2 乾式蝕刻 34 2.6 接合技術 35 第三章 實驗之設計方法與製造 38 3.1 實驗目的 38 3.2 製程規劃 38 3.3 實驗之製造方法與步驟 40 3.3.1 矽基材之微影蝕刻 40 3.3.2 擴散阻隔層Ta之濺鍍 42 3.3.3 鈹銅合金第一次微影蝕刻及成型 45 3.3.4 矽基材與鈹銅合金之接合 52 3.3.5 鈹銅合金第二次微影蝕刻 52 第四章 實驗結果之分析與討論 54 4.1 實驗量測設備 54 4.1.1 光學顯微鏡 54 4.1.2 場發射掃描式電子顯微鏡 54 4.1.3 表面輪廓量測儀 55 4.2 實驗結果 55 4.2.1 矽基材蝕刻後之結果討論 55 4.2.2 濺鍍Ta之田口實驗結果分析 70 4.2.3 鈹銅合金第一次蝕刻之結果 76 4.2.4 鈹銅合金成型之結果 77 4.2.5 鈹銅合金和矽基材之接合結果 78 4.2.6 鈹銅合金第二次蝕刻之結果 80 第五章 結論與未來研究方向 83 5.1 結論 83 5.2 未來研究方向 85 參考文獻 86 作者簡介 92

    [1] Trimmer, W. S. N., "Microrobots and micromechanical system," Sensors and Actuators, Vol. 19, pp. 267-287 (1989).
    [2] Ayazi, F., and Najafi, K., "High Aspect Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology," Journal of Microelectromechanical Systems, Vol. 9., No. 3, pp. 288-294 (2000).
    [3] McNie, M., King , D., Vizard, C., Holmes, A., and Lee, K. W., "High Aspect Ratio Micromachining (HARM) technologies," Microsystem Technology, Vol. 6, pp. 184-188 (2000).
    [4] Dario, P., Carrozza, M. C., Benvenuto, A., and Menciassi, A., "Micro-system in biomedical applications," J. Micromech.Microeng., Vol. 10, pp. 235-244 (2000).
    [5] Delpoux, A., "Motorola and MEMS: the way up to a surface micromachined accelerometer," Microelectronics Journal, Vol. 28, pp. 381-387 (1997).
    [6] Pedrocchi, A., Hoen, S., Ferrigno, G., and Pedotti, A., "Perspectives on MEMS in Bioengineering: A Novel Capacitive Position Microsensor," IEEE Transaction on Biomedical Engineering, Vol.47, No. 1, pp. 8-11 (2000).
    [7] 邱燦賓,施敏,"電子束微影技術",科學發展月刊 National Science Council Monthly, Vo. 28, No. 6, pp.423-434.
    [8] 吳清祈,鍾震桂,"微機電系統技術簡介",科儀新知, Vol. 18, No. 3, pp.26-40 (1996).
    [9] Madou, M., "Fundamentals of Microfabrication," New York, CRC Press (1997).
    [10] 楊啟榮,"微機電LIGA製程技術簡介",科儀新知,Vol. 19, No. 4, pp. 4-17 (1998).
    [11] 張振銓,"高深寬比微結構模仁的製作程序的研究—利用矽基加工技術",國立交通大學,碩士論文,民國九十一年。
    [12] Zhu, Q., Ma, L., and Sitaraman, S. K., "β-Helix: a lithography-based compliant off-chip interconnect," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 26, Issue 3, pp. 582-590 (2003).
    [13] [Online]. Available: http://www.olinbrass.com/
    [14] [Online]. Available: http://www.brushwellman.cn/
    [15] [Online]. Available: http://public.itrs.net
    [16] Hoffman, D. W., and Thornton, J. A., "Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source," Journal of Vacuum Science and Technology, Vol. 20, No. 3, pp. 355-358 (1982).
    [17] Smith, D. L., and Alimonda, A. S., "A new flip-chip technology for high-density packaging," Proc. of the 46th Electronic Components and Technology Conference, Orlando, FL, pp. 1069-1073 (1996).
    [18] Smith, D. L., Fork, D. K., Thornton, R. L., Alimonda, A. S., Chua, C. L., Dunnrowicz, C., and Ho, J., "Flip-chip bonding on 6-μm pitch using thin-film microspring technology," Proc. of the 48th Electronic Components and Technology Conference, Seattle, WA, pp. 325-329 (1998).
    [19] Nikles, S., Bradley, R., Bledsoe, S., and Najafi, K., "Design and testing of conductive polysilicon beam leads for use in a high-density biomedical connector," Journal of Micromechanics and Microengineering, Vol. 14, pp. 957-968 (2004).
    [20] Larsson, M. P., and Syms, R. R. A., "Self-aligning MEMS in-line separable electrical connector," Journal of Microelectromechanical Systems, Vol. 13, Issue 2, pp. 365-376 (2004),.
    [21] Eldridge, B. E., and Mathieu, G. L., "Method and apparatus for wirebonding, for serving bond wires, and for forming balls on the ends of bond wires," U. S. Patent 5601740, Feb. 11, 1997.
    [22] Pruitt, B. L., and Kenny, T. W., "Piezoresistive cantilevers and measurement system for characterizing low force electrical contacts," Sensors and Actuators A, Vol. 104, pp. 68-77 (2003).
    [23] Bhuiyan, M. M. I., Unno, T., Yokoyama, Y., Toriyama, T., and Sugiyama, S., "Micro connector fabricated by micro process technology," Proc. of 2000 International Symposium on Micromechatronics and Human Science, pp. 83-88 (2000).
    [24] Ehrfeld, W., Hagmann, P., Munchmeyer, D., and Becker, E. W., " Process for the manufacture of mechanically separable multiconnectors for the electrical connection of microelectronic components, and multiconnectors fabricated by this process," European Patent EP 0184608, June 18, 1986.
    [25] Chowdhury, S., Ahmadi, M., Jullien, G. A., and Miller W. C., "A MEMS socket system for high density SoC interconnection," IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 657-660 (2002).
    [26] Kwak, M. Y., Shin, D. H., Kang, T. W., Kim, K. N., "Characteristics of TiN barrier layer against Cu diffusion," Thin Solid Films, 339, pp. 290-293 (1999).
    [27] Muller, R. S., and Kamins, T. I., Device Electronics for Integrated Circuits, 2nd ed., John Wiley & Sons, New York, pp. 1-56 (1986).
    [28] Murarka, S. P., and Hymes, S. W., "Copper metallization for
    ULSI and beyond," Critical Reviews in Solid State and Materials Sciences, vol. 20, no. 2, pp. 87-124, 1995.
    [29] Ono, H., Nakano, T., and Ohta, T., Applied Physics Letters, 64 (12), pp. 1511-1513 (1994).
    [30] Jiang, Q. T., Faust, R., Lam, H. R., and Muchda ,J., Proceedings of the International Interconnect Technology Conference, pp. 125-127 (1999).
    [31] Kim, D. J., and Kim, Y. T., "Nanostructured Ta-Si-N diffusion barriers for Cu metallization," Journal of Applied Physics, vol. 82, no. 10, pp. 4847–4851, Nov.15, 1997.
    [32] Ryu, C., Lee, H., Kwon, K. W., Loke, A. L. S., and Wong, S. S., Solid State Technology, 42 (4), pp. 53-56 (1999).
    [33] Kouno, T., Niwa, H., and Yamada, M., "Effect of TiN Microstructure on Diffusion Barrier Properties in Cu Metallization," Journal of the Electrochemical Society, 145(6), pp. 2164-2167 (1998).
    [34] 李世鴻,"半導體工程原理",全威圖書,民國八十七年。
    [35] Smith, D. L., "Thin-Film Deposition Principles and Practice," The McGraw-Hill Companies Inc., pp.483-499 (1999).
    [36] Ohring, M., "The Materials Science of Thin Film," Academic Press, pp.121-123 (1992).
    [37] Smith, D. L., THIN-FILM DEPOSITION, McGraw-Hill, North American (1995).
    [38] 吳昌崙、張景學 編著,"半導體製造技術",新文京開發出版股份有限公司,民國九十二年。
    [39] 羅正忠、李嘉平、鄭湘原 編譯,"半導體工程-先進製程與模擬",民國九十一年。
    [40] 陳美杏,"微型半導體式氧氣感測器之設計製作與測試",國立成功大學,碩士論文,民國九十二年。
    [41] 黃皇齊,"應用UV- L IGA 於導光板模仁之製作研究",國立高雄應用科技大學,碩士論文,民國九十三年。
    [42] 陳建州,"非等向性蝕刻製程於矽基板之應用:翻鑄模仁與矽基板V型凹槽",國立中山大學,碩士論文,民國九十年。
    [43] 行政院國家科學委員會精密儀器發展中心,"微機電系統技術與應用",民國九十二年七月。
    [44] 韋乾佑,"以微電鑄法製造高填充率之微透鏡陣列模仁研究",國立台灣科技大學,碩士論文,民國九十四年。

    [45] [Online]. Available:
    http://www.nchu.edu.tw/~rict/fesem/ref-fe/fe-sem-intro-nchu.htm
    [46] 黃堯民,"光纖式懸臂樑結構微型壓力感測器",私立中原大學,碩士論文,民國九十二年。
    [47] Mimiwaty, M. N., Badarich, B., "The Effects of Temperture and KOH Concentration on Silicon Etching Rate and Membrane Surface Roughness, " IEEE and Burhanuddin Yeop Majlis, pp.524-528 (2002).

    無法下載圖示 全文公開日期 2011/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE