簡易檢索 / 詳目顯示

研究生: 廖培桐
Liao-Pei Tung
論文名稱: 超音波法探討矽酸鹽基膠結材工程性質
Study on Engineering Properties of Silicate-based Paste with Ultrasonic Pulse Velocity (UPV) Method
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 林宜清
王金圳
孫詠明
陳君弢
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 119
中文關鍵詞: 凝結時間超音波測試縱波橫波材料漿體
外文關鍵詞: ultrasonic test, transverse wave, quaternary blended paste
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係使用縱波與橫波超音波監測技術,檢測三種水灰比(0.3、0.4及0.5)之水泥漿體、三種水灰比(0.4、0.5及0.6)之排煙脫硫(flue gas desulfurization, FGD)石膏混合漿體及三種水固比(0.3、0.4及0.5)之鹼激發材料(alkali-activated material, AAM)漿體的新拌漿體凝結變化與硬固性質,藉由超音波波速變化及維卡針凝結時間試驗,計算出材料重要參數,並探討維卡針初終凝儀器是否適用於非水泥基漿體。
研究結果發現:(1)水泥、FGD石膏混合及鹼激發材料漿體之凝結時間皆隨含水量上升而延長,水泥漿體水灰比由0.5降低至0.3時,凝結時間快約1.78倍;FGD石膏混合漿體水灰比由0.6降低至0.4時,凝結時間快約1.12至1.29倍;鹼激發材料水固比由0.5降低至0.3時,凝結時間分別快約3.29至3.44倍;(2)超音波縱波及橫波波速皆隨漿體含水量上升而下降,水泥漿體水灰比由0.5降低至0.3時,新拌1200分鐘及28天齡期超音波波速分別提升約40%及25%;FGD石膏混合漿體水灰比由0.6降低至0.4時,新拌1200分鐘及28天齡期超音波波速分別提升約9%及10%;鹼激發材料漿體水固比由0.5降低至0.3時,新拌1200分鐘及28天齡期超音波波速分別提升約30%及17%;(3)運用超音波波速量測技術可監測材料於動態彈性模數及卜松比變化;(4)不同水灰(固)比水泥及FGD石膏混合漿體之凝結時間與縱波波速有相關性,但與鹼激發材料漿體相關性不高;(5)水泥、FGD石膏混合及鹼激發材料漿體抗壓強度與計算動態彈性模數呈指數迴歸關係,R2分別為0.762177、0.69978及0.886494。


In this study, the longitudinal and transverse ultrasonic pulse velocity techniques are used to monitor the fresh setting and hardening properties of cement paste with 3 different water-to-cement ratios of 0.3, 0.4 and 0.5 and FGD gypsum paste with 3 different water-to-powder ratios of 0.4, 0.5 and 0.6 and alkali-activated material (AAM) paste with 3 different water-to-solid ratios of 0.3, 0.4 and 0.5. The important parameters of material are calculated through the changes of ultrasonic pulse velocities and the Vicat needle setting test. Vicat needle setting test is investigated whether it is suitable for non-cement-based paste.
The research results show that: (1) The setting time of cement paste, FGD gypsum paste and alkali-activated material paste are increased with the increase of water content. For cement paste specimens, the decrease of water-to-cement ratio from 0.5 to 0.3 accelerates the setting time for about 1.78 times faster. For FGD gypsum paste specimens, the decrease of water-to-powder ratio from 0.6 to 0.4 accelerates the setting time for about 1.12-1.29 times faster. For AAM paste specimen, the decrease of water-to-solid ratio from 0.5 to 0.3 accelerates the setting time for about 3.29-3.44 times faster; (2) Longitudinal and transverse ultrasonic velocities are decreased with the increase of water content. For cement paste specimens, the decrease of water-to-cement ratio from 0.5 to 0.3 increases UPV results for 40% and 25% for 1200 minutes fresh paste and 28-day hardened paste, respectively. For FGD gypsum paste specimens, the decrease of water-to-powder ratio from 0.6 to 0.4 increases UPV results for 9% and 10% for 1200 minutes fresh paste and 28-day hardened paste, respectively. For AAM paste specimens, the decrease of water-to-solid ratio from 0.5 to 0.3 increases UPV results for 30% and 17% for 1200 minutes fresh paste and 28-day hardened paste, respectively.; (3) The application of ultrasonic pulse velocity measurement technology can be used to monitor the changes of important material parameters like Young’s modulus and Poisson’s ratio; (4) The setting times of cement paste and FGD gypsum paste are apparently related to the longitudinal wave velocity, while such corrllation for alkali-activated material paste is insignificant; (5) The compressive strength of cement paste, FGD gypsum paste and AAM paste are exponentially related to the calculated elastic modulus with the value of R2 are 0.762177, 0.69978 and 0.886494, respectively.

摘要 i Abstract ii 致謝 iv 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程與內容 2 第二章 文獻回顧 5 2.1 水泥性質 5 2.1.1 卜特蘭水泥(Portland cement) 5 2.1.2 水泥漿體之水化現象 5 2.1.3 卜特蘭水泥之水化凝結時間 7 2.2 FGD石膏混合材料性質 7 2.2.1 飛灰 7 2.2.2 高爐爐石粉 9 2.2.3 排煙脫硫(flue gas desulfurization, FGD)石膏 10 2.3 鹼激發材料性質 11 2.3.1 鹼性激發劑 11 2.3.2 鹼激發材料反應機制 12 2.4 水泥之凝結定義 12 2.4.1 硬化過程 12 2.4.2 凝結時間之判定 13 2.5 波傳性質 13 2.5.1 波傳種類 13 2.5.2 反射、透射與折射之關係 15 2.5.3 音阻抗 17 2.5.4 波之衰減特性 18 2.6 超音波 20 2.7 訊號處理-傅立葉轉換(Fourier transform) 22 2.8 超音波檢測水泥材料之發展 23 第三章 試驗計畫 29 3.1 試驗內容與流程 29 3.2 試驗材料 29 3.3 試驗儀器設備 30 3.4 試驗變數及項目 32 3.4.1 試驗內容說明 32 3.4.2 試驗編號與項目說明 32 3.4.3 試驗配比設計說明 33 3.5 水泥、FGD石膏混合及鹼激發材料漿體試體拌和與製作 34 3.5.1水泥漿體拌和過程與試體製作 34 3.5.2 FGD石膏混合漿體拌和過程與試體製作 35 3.5.3鹼激發材料漿體拌和過程與試體製作 36 3.6 試驗方法 36 3.6.1新拌性質試驗 36 3.6.2硬固性質試驗 37 第四章 試驗結果分析與討論 55 4.1 水泥、FGD石膏混合及鹼激發材料漿體新拌性質 55 4.1.1 維卡針凝結時間 55 4.1.2 超音波縱波與橫波波速 56 4.2 水泥、FGD石膏混合及鹼激發材料漿體硬固性質 59 4.2.1 抗壓強度 60 4.2.2 超音波縱波與橫波波速 62 4.2.3 動態彈性模數與動態卜松比 65 4.2.4 抗壓強度與動態彈性模數關係 67 第五章 結論與建議 93 5.1 結論 93 5.2 建議 95 參考文獻 96

參考文獻
[1] 楊志強(2001),「混凝土中水泥漿和顆粒骨材界面特性之研究」,碩士論文,國立交通大學土木工程研究所。
[2] Popovics, S. (1982). Fundamentals of Portland Cement Concrete: A Quantitative Approach, vol. 1: Fresh Concrete. New York: John Wiley and Sons, Inc.
[3] 黃兆龍(1999),「混凝土性質與行為」,台北市,詹氏書局。
[4] 黃兆龍(2007),「卜作嵐混凝土使用手冊」,台北市,財團法人中興工程顧問社。
[5] 經濟部標準檢驗局(2008),「混凝土用飛灰及天然或煅燒卜作嵐攙和物」,vol. CNS3036。
[6] 朱純熙、盧晨(2001),「水玻璃硬化的認識過程」,無機鹽工業,Vol. 33。
[7] 李火燦(2001),「排煙脫硫設備設計、裝機、運轉及維護」,台灣電力公司。
[8] Shi, C. and R. L. Day (1995), “A calorimetric study of early hydration of alkali-slag cements,” Cement and Concrete Research, vol. 25, pp. 1333-1346.
[9] Shi, C. and R. L. Day (1996), “Some factors affecting early hydration of alkali-slag cements,” Cement and Concrete Research, vol. 26, pp. 439-447.
[10] Glukhovsky, V. D., G. S. Rostovskaja, and G.V. Rumyna (1980), “High strength slag alkaline cements,” in seventh international congress on the chemistry of cement, pp. 164-168.
[11] 紀郁芳(2004),「超音波脈波訊號之小波分析」,碩士論文,朝陽科技大學營建工程系。
[12] 祝同江(1993),「工程數學-積分變換」,台北市,凡異出版社。
[13] 蕭家孟(1999),「以應力波檢測混凝土內部鋼筋保護層厚度之研究」,博士論文,國立中興大學土木工程研究所。
[14] 林佳慶(2002),「利用Z域方法分析及合成平行耦合微帶線濾波器」,碩士論文,國立台灣科技大學電子工程系。
[15] 林傳生、李佩謙(1996),「數位訊號處理器簡介及應用」,台北市,全華科技圖書股份有限公司,第4-19~4-24頁。
[16] 陳永增、鄧惠源(1999),「非破壞性檢測」,全華科技圖書公司。
[17] 張獻元(2002),「層狀混凝土版波傳行為與材料性質之探討」,碩士論文,國立台灣科技大學營建工程系。
[18] 陳柏存(2008),「以表面波譜法與支持向量機評估高溫損傷混凝土之性質」,博士論文,國立台灣科技大學營建工程系。
[19] 蘇志晃(2003),「波音波檢測應用於鋼筋混凝土結構內部成像之研究」,碩士論文,國立中正大學地震研究所。
[20] 王玉萍(2003),「應用損傷力學與超音波檢測對含裂縫混凝土損傷評估之研究」,碩士論文,中華大學土木工程研究所。
[21] 朱文賓(2002),「超音波掃描檢測技術與應用研究」,碩士論文,元智大學機械工程系。
[22] 張治泰、邱平(2005),「超音波在混凝土質量檢測中的應用」,化學工業出版社。
[23] 吳學文、黃啟貞、陳必貫和葉競榮合編(1998),「超音波檢測法初級」,中華民國非波壞性檢測協會。
[24] Krautkrämer, J. and H. Krautkrämer. (1990), Ultrasonic Testing of Materials, Berlin, Germany:Springer-Verlag, p. 111.
[25] Blitz, J. and G. Simpson. (1996), Ultrasonic Methods of Non-Destructive Testing, Chapman and Hall.
[26] Naik, T. R., V. M. Malhotra and J. S. Popovics. (2004), “The Ultrasonic Pulse Velocity Method,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL:CRC Press, pp. 8-1~8-19.
[27] Shih, J. and L. Chen. (2002), “Application of Concrete Nondestructive Techniques on Construction Engineering,” The 2nd Taiwan Formosa Enterprises Engineering and Technology Conference, Taipei, Taiwan.
[28] 許寶琮(2006),「短時頻分析於表面波譜法應用之初步探討」,碩士論文,國立成功大學土木工程研究所。
[29] Oppenheim, A.V. and R.W. Schafer. (1998), Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall.
[30] Mohamed, M. S., J. Carette, B. Delsaute and S. Staquet. (2017), Applicability of Ultrasonic Measurement on the Monitoring of the Setting of Cement Pastes: Effect of Water Content and Mineral Additions. Advances in Civil Engineering Materials, pp. 84-99.
[31] Trtnik, G., G. Turk., F. Kavčič. and V. B. Bosiljkov. (2008), Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste, Cem. Concr. Res., 38, pp. 1336-1342.
[32] Zhang, Y., W. Zhang, W. She, L. Ma and W. Zhu. (2012), Ultrasound monitoring of setting and hardening process of ultra-high performance cementitious material. NDT&E International. 47:177-84
[33] Zhang, W., Y. Zhang, L. Liu, G. Zhang and Z. Liu. (2012), Investigation of the influence of curing temperature and silica fume content on setting and hardening process of the blended cement paste by an improved ultrasonic apparatus. Construction Building Materials. 33:32-40.
[34] Zhang, S., Y. Zhang and Z. Li. (2018) Ultrasonic monitoring of setting and hardening of slag blended cement under different curing temperatures by using embedded piezoelectric transducers. Construction Building Materials. 159:553-60.
[35] Sun, H. and J. Shu. (2017) Monitoring Early Age Properties of Cementitious Material Using Ultrasonic Guided Waves in Embedded Rebar. Journal of Nondestructive Evaluation. 36:5
[36] Caretee, J. and S. Stéphanie. (2015) Monitoring the setting process of mortars by ultrasonic P and S-wave transmission velocity measurement. Construction Building Materials. 94:196-208
[37] Caretee, J. and S. Stéphanie. (2016) Monitoring the setting process of eco-binders by ultrasonic P-wave and S-wave transmission velocity measurement: Mortar vs concrete. Construction Building Materials. 110:32-41.
[38] Bram, D. (2011) Monitoring the early-age hydration of self-compacting concrete using ultrasonic p-wave transmission and isothermal calorimetry. Materials and Structures. 44:1537-58.
[39] Carette, J. and S. Stéphanie. (2016) Monitoring and modelling the early age and hardening behaviour of eco-concrete through continuous non-destructive measurements: Part I. Hydration and apparent activation energy. Cement & Concrete Composites. 73:10-18.
[40] ASTM C191-18a, (2018) Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM Committee C01
[41] http://www.phyworld.idv.tw/Nature/Jun_2/htm/09.htm (2019)

無法下載圖示 全文公開日期 2024/08/29 (校內網路)
全文公開日期 2024/08/29 (校外網路)
全文公開日期 2024/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE