簡易檢索 / 詳目顯示

研究生: 張芳瑜
Fang-Yu Chang
論文名稱: 開發應用於高安全性鋰離子電池之新穎具精準活化溫度之高分子添加助劑PDA-BMI-Li/Trixene Blocked Isocyanates
Development of novel polymer additives with precise activation temperature for highly safe lithium ion battery, PDA-BMI-Li/Trixene Blocked Isocyanates
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 楊純誠
Chun-Chen Yang
范國泰
Quoc-Thai Pham
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 104
中文關鍵詞: 鋰離子電池正極活性物質安全性添加劑寡聚物
外文關鍵詞: Lithium-ion battery, safety, additives, cathode active materials, oligomers
相關次數: 點閱:358下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

同時具備高安全性以及儲能性佳等功用之鋰離子電池成為備受關注的綠色能源,鋰離子電池已經廣泛地運用在各種電子產品,而具有高能量密度的鋰離子電池則被視為電動汽車(Electric Vehicle)和油電混合動力汽車(Hybrid Electric Vehicle)的理想動力源,這顯示安全性更為重要。
本研究擬開發一新穎安全之反應性聚合物添加劑,藉由對苯二胺(PDA)與雙馬來醯亞胺(BMI)進行邁克爾加成反應產生之衍生物(BA2),並且添加單水氫氧化鋰對其電化學性能進行優化,其中包含具精準活化溫度為 120 ℃之封閉型多元異氰酸酯(B3),目的是在高溫時能夠快速地進行反應,使一薄膜緻密包覆於正極材料表面,進而終止電化學反應並避免熱失控發生。
本研究透過熱示差掃描分析(DSC)、熱重分析(TGA) 、X光繞射儀(XRD)以及掃描式電子顯微鏡(SEM)等儀器對於反應性聚合物添加劑進行材料性質分析,接著透過電化學儀器進行循環伏安法分析(CV)、充放電測試(Charge/Discharge test)、循環壽命測試(Cycling test)及交流阻抗分析(EIS),闡明添加劑對於各電芯樣品之電化學性能影響,並使用四點探針電阻測量器(Four Point Prober)及交流阻抗分析(EIS),探討添加劑於表面薄層之安全性分析。
研究結果表明,1.5% BA2Li-B3電芯樣品在循環壽命測試中與Benchmark相當,且優於Blank樣品。BA2Li-B3之熱裂解溫度較Benchmark低,推測是對苯二胺(PDA)的影響。在四點探針電阻實驗與交流阻抗分析中,在高溫後BA2Li-B3樣品之電阻明顯高於Blank樣品,說明此添加劑具有效的安全啟動機制。整體而言,BA2Li-B3 高分子添加劑能有效提高鋰離子電池之安全性,並且相較於BA2-B3之電池性能表現更為優異,具有作為正極材料安全性添加劑可行性。


This work aims to develop an innovative reactive polymer additive for improving the safety of lithium-ion batteries. Nowadays, lithium-ion batteries are widely used in electronic products. Furthermore, lithium-ion batteries with high energy density have gained significant attention as a green energy source, particularly for electric vehicles (EVs) and hybrid electric vehicles (HEVs) and energy storage system applications. Thus, ensuring their safety is of utmost importance.
This study focuses on the synthesis of a novel reactive polymer additive, abbreviated as BA2Li-B3. BA2Li-B3 is derived from the Michael addition reaction of p-phenylenediamine (PDA) and bismaleimide (BMI). By incorporating lithium hydroxide monohydrate and a blocked polyisocyanate (B3) with a precise activation temperature of 120°C into the intermediate of PDA-BMI, the electrochemical performance of the additive is optimized. The objective of this work was to achieve a dense thin film coated on the positive electrode material's surface.
Several techniques were employed to characterize the reactive polymer additive's material properties. Differential scanning analysis (DSC), thermogravimetric analysis (TGA), X-ray diffractometer(XRD), and scanning electron microscopy (SEM) were utilized to examine the thermal behavior and morphological characteristics of the additive. The electrochemical performance of the lithium-ion batteries with the additive inside was assessed using various tests. Cyclic voltammetry (CV), charge/discharge tests, cycle life tests, and AC impedance analysis (EIS) were conducted to evaluate the redox reaction behavior, energy storage and release capabilities, longevity overcharge/discharge cycles, and impedance characteristics of the batteries, respectively.
The research findings indicate that the 1.5% BA2Li-B3 cell sample performs on par with the benchmark in the cycle life test and outperforms the blank sample as well. The four-point probe resistance test and Electrochemical Impedance Spectroscopy test reveal that the BA2Li-B3 sample exhibits significantly higher resistance than the blank sample at elevated temperatures, indicating an effective safety mechanism.
In summary, the BA2Li-B3 polymer additive effectively enhances the safety of lithium-ion batteries while it demonstrates a superior battery performance compared to BA2-B3. This research also shows the feasibility of BA2Li-B3 as a positive electrode material safety additive and contributes to the ongoing efforts to develop safer and more efficient lithium-ion batteries for sustainable energy applications.

摘要 I Abstract II 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.2.1 鋰離子電池發展簡史 3 1.2.2 鋰離子電池工作原理 4 1.2.3 正極材料 5 1.2.4 負極材料 7 1.2.5 電解液 9 1.2.6 隔離膜 9 1.2.7 研究動機 11 第二章 文獻回顧 12 2.1 鋰離子電池之安全性 12 2.2 反應性聚合物添加劑之正極塗層 15 2.3 車用鋰離子電池正極NCM811安全性改質 21 第三章 實驗藥品、設備與方法 26 3.1 實驗藥品 26 3.2 實驗設備 28 3.3 實驗方法 29 3.3.1 DSC樣品製備 31 3.3.2 TGA樣品製備 31 3.3.3 添加劑製備 33 3.3.4 漿料製備 34 3.3.5 電極製備 36 3.3.6 鈕扣型電池組裝 36 第四章 結果與討論 38 4.1 差示掃描量熱儀分析 38 4.2 熱重量分析儀(TGA) 39 4.3 循環伏安法(CV)分析 41 4.3.1 Blank 樣品循環伏安法之結果 42 4.3.2 Additive 高分子添加劑樣品循環伏安法之結果 43 4.3.3 Benchmark 樣品循環伏安法之結果 46 4.4 常溫下電池充放電性能與循環壽命 50 4.4.1 常溫初始充放電測試 50 4.4.2 常溫充放電測試 53 4.4.3 常溫循環壽命測試 54 4.5 倍率性能 55 4.6 電化學交流阻抗分析 58 4.6.1 常溫之電池活化前分析 59 4.6.2 常溫之電池循環後分析 60 4.6.3 高溫之電化學交流阻抗分析 62 4.7 電池高溫下之充放電、循環壽命 67 4.7.1 電池於高溫下之充放電測試 68 4.7.2 電池於高溫下之循環壽命測試 69 4.8 四點探針電阻測量儀 71 4.8.1 Blank、Additive 高分子添加劑之電阻結果分析 72 4.9 X光繞射儀(XRD) 75 4.10 場發射掃描式電子顯微鏡 76 4.10.1 長圈數循環前後樣品極片之分析 76 4.10.2 高溫前後樣品極片之分析 78 第五章 結論 81 參考文獻 82

1. Wu, Y.S., et al., Coating of a novel lithium-containing hybrid oligomer additive on nickel-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode materials for high-stability and high-safety lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2022. 10(22): p. 7394-7408.
2. Deng, D., et al., Green energy storage materials: Nanostructured TiO 2 and Sn-based anodes for lithium-ion batteries. Energy & Environmental Science, 2009. 2(8): p. 818-837.
3. Deng, D., Li‐ion batteries: basics, progress, and challenges. Energy Science & Engineering, 2015. 3(5): p. 385-418.
4. Manthiram, A., An outlook on lithium ion battery technology. ACS central science, 2017. 3(10): p. 1063-1069.
5. Wakihara, M., Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports, 2001. 33(4): p. 109-134.
6. Scrosati, B., J. Hassoun, and Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy & Environmental Science, 2011. 4(9): p. 3287-3295.
7. Thackeray, M.M., C. Wolverton, and E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science, 2012. 5(7): p. 7854-7863.
8. Pistoia, G., Lithium-ion batteries: advances and applications. 2013.
9. Masias, A., J. Marcicki, and W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS energy letters, 2021. 6(2): p. 621-630.
10. Broussely, M., Lithium-ion batteries for EV, HEV and other industrial applications. Lithium Batteries: Science and Technology, 2003: p. 645-685.
11. Al-Hallaj, S. and J.R. Selman, Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. Journal of power sources, 2002. 110(2): p. 341-348.
12. Bashir, T., et al., A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Mater, 2021. 1: p. 100019.
13. Reddy, M.V., et al., Brief history of early lithium-battery development. Materials, 2020. 13(8): p. 1884.
14. Kim, T., et al., Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A, 2019. 7(7): p. 2942-2964.
15. Eichinger, G. and J. Besenhard, High energy density lithium cells: Part II. Cathodes and complete cells. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976. 72(1): p. 1-31.
16. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
17. Thackeray, M.M., et al., Lithium insertion into manganese spinels. Materials Research Bulletin, 1983. 18(4): p. 461-472.
18. Chen, T., et al., Applications of lithium-ion batteries in grid-scale energy storage systems. Transactions of Tianjin University, 2020. 26(3): p. 208-217.
19. Yu, H. and H. Zhou, High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. The journal of physical chemistry letters, 2013. 4(8): p. 1268-1280.
20. Feng, X., et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy storage materials, 2018. 10: p. 246-267.
21. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
22. Ohzuku, T. and R.J. Brodd, An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources, 2007. 174(2): p. 449-456.
23. Manthiram, A., Materials challenges and opportunities of lithium ion batteries. The Journal of Physical Chemistry Letters, 2011. 2(3): p. 176-184.
24. Chebiam, R., F. Prado, and A. Manthiram, Structural instability of delithiated Li1− x Ni1− y Co y O2 cathodes. Journal of the Electrochemical Society, 2001. 148(1): p. A49.
25. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 1997. 144(4): p. 1188.
26. Jiang, J. and J.R. Dahn, ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li [Ni0. 1Co0. 8Mn0. 1] O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochemistry Communications, 2004. 6(1): p. 39-43.
27. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
28. Ferg, E., et al., Spinel anodes for lithium‐ion batteries. Journal of the Electrochemical Society, 1994. 141(11): p. L147.
29. Cheng, H., et al., Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry, 2021. 57: p. 451-468.
30. Wu, Y., E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries. Journal of power sources, 2003. 114(2): p. 228-236.
31. Reddy, M.V., G. Subba Rao, and B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews, 2013. 113(7): p. 5364-5457.
32. Goriparti, S., et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of power sources, 2014. 257: p. 421-443.
33. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
34. Wu, R., et al., MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. Journal of Materials Chemistry A, 2013. 1(37): p. 11126-11129.
35. James, S.L., Metal-organic frameworks. Chemical Society Reviews, 2003. 32(5): p. 276-288.
36. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews, 2014. 114(23): p. 11503-11618.
37. Meyer, W.H., Polymer electrolytes for lithium‐ion batteries. Advanced materials, 1998. 10(6): p. 439-448.
38. Gnanaraj, J., et al., A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC. Journal of the Electrochemical Society, 2003. 150(11): p. A1533.
39. Huang, X., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011. 15(4): p. 649-662.
40. Zhang, L., et al., High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials, 2021. 41: p. 522-545.
41. Gogia, A., et al., Binder-Free, Thin-Film Ceramic-Coated Separators for Improved Safety of Lithium-Ion Batteries. ACS omega, 2021. 6(6): p. 4204-4211.
42. Pham, Q.-T. and C.-S. Chern, Applications of polymers in lithium-ion batteries with enhanced safety and cycle life. Journal of Polymer Research, 2022. 29(4): p. 124.
43. Costa, C.M., et al., Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019. 22: p. 346-375.
44. Li, Y., H. Pu, and Y. Wei, Polypropylene/polyethylene multilayer separators with enhanced thermal stability for lithium-ion battery via multilayer coextrusion. Electrochimica Acta, 2018. 264: p. 140-149.
45. Orendorff, C.J., The role of separators in lithium-ion cell safety. The Electrochemical society interface, 2012. 21(2): p. 61.
46. Zhang, H., et al., Progress in polymeric separators for lithium ion batteries. RSC advances, 2015. 5(109): p. 89848-89860.
47. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of power sources, 2007. 164(1): p. 351-364.
48. Francis, C.F., I.L. Kyratzis, and A.S. Best, Lithium‐ion battery separators for ionic‐liquid electrolytes: a review. Advanced Materials, 2020. 32(18): p. 1904205.
49. Lyu, P., et al., Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 2020. 31: p. 195-220.
50. Zhang, J., et al., An overview on thermal safety issues of lithium-ion batteries for electric vehicle application. Ieee Access, 2018. 6: p. 23848-23863.
51. Lyu, P., et al., Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage. Applied Thermal Engineering, 2020. 166: p. 114749.
52. Peng, P. and F. Jiang, Thermal safety of lithium-ion batteries with various cathode materials: A numerical study. International Journal of Heat and Mass Transfer, 2016. 103: p. 1008-1016.
53. An, Z., et al., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017. 26: p. 391-412.
54. Hyung, Y.E., D.R. Vissers, and K. Amine, Flame-retardant additives for lithium-ion batteries. Journal of power sources, 2003. 119: p. 383-387.
55. Wu, M.-S., et al., Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests—short-circuit tests. Electrochimica acta, 2004. 49(11): p. 1803-1812.
56. Qiu, Y. and F. Jiang, A review on passive and active strategies of enhancing the safety of lithium-ion batteries. International Journal of Heat and Mass Transfer, 2022. 184: p. 122288.
57. Ghiji, M., et al., A review of lithium-ion battery fire suppression. Energies, 2020. 13(19): p. 5117.
58. Li, Y., et al., Stable and safe lithium metal batteries with Ni-rich cathodes enabled by a high efficiency flame retardant additive. Journal of The Electrochemical Society, 2019. 166(13): p. A2736.
59. Park, K.-S., et al., LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety. Chemistry of Materials, 2012. 24(14): p. 2673-2683.
60. Lee, H., et al., Li2NiO2 as a novel cathode additive for overdischarge protection of li-ion batteries. Chemistry of Materials, 2008. 20(1): p. 5-7.
61. Wu, Y., et al., Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021. 37: p. 77-86.
62. Duh, Y.-S., M.-T. Tsai, and C.-S. Kao, Thermal runaway on 18650 lithium-ion batteries containing cathode materials with and without the coating of self-terminated oligomers with hyper-branched architecture (STOBA) used in electric vehicles. Journal of Thermal Analysis and Calorimetry, 2017. 129: p. 1935-1948.
63. Wang, F.-M. and L.-Y. Yang. Synergy of Nyquist and Bode Electrochemical Impedance Spectroscopy Studies to Stoba in Lithium Ion Battery. in Electrochemical Society Meeting Abstracts 230. 2016. The Electrochemical Society, Inc.
64. Liu, H.-M., et al., Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries. RSC Advances, 2014. 4(99): p. 56147-56155.
65. Lin, C.-C., et al., Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode. Electrochimica Acta, 2013. 101: p. 11-17.
66. Wu, Y.-S., et al., Study of electrochemical performance and thermal property of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials coated with a novel oligomer additive for high-safety lithium-ion batteries. Chemical Engineering Journal, 2021. 405: p. 126727.
67. Aurbach, D., et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica acta, 2002. 47(9): p. 1423-1439.
68. Schweidler, S., et al., Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: a long-term cycling study of full cells. ACS applied energy materials, 2019. 2(10): p. 7375-7384.
69. Yukun, F., et al., Microwave-assisted synthesis and Co, Al Co-modification of Ni-rich LiNi0. 8Mn0. 2O2 materials for Li-ion battery electrode. JOURNAL OF INORGANIC MATERIALS, 2021. 36(7): p. 718-724.
70. Ryu, H.-H., et al., Capacity fading of Ni-rich Li [Ni x Co y Mn1–x–y] O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of materials, 2018. 30(3): p. 1155-1163.
71. Kim, K., et al., Electrolyte-additive-driven interfacial engineering for high-capacity electrodes in lithium-ion batteries: promise and challenges. ACS Energy Letters, 2020. 5(5): p. 1537-1553.
72. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
73. Schipper, F., et al., From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel‐rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Advanced Energy Materials, 2018. 8(4): p. 1701682.
74. Yang, G., et al., Well-ordered spherical LiNi0. 8Co0. 1Mn0. 1O2 cathode material for lithium-ion batteries. Journal of Materials Research, 2020. 35(1): p. 51-57.
75. She, S., et al., Surface coating of NCM-811 cathode materials with g-C3N4 for enhanced electrochemical performance. ACS omega, 2022. 7(28): p. 24851-24857.
76. Barai, A., et al., A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy. Journal of Power Sources, 2015. 280: p. 74-80.
77. Dees, D., et al., Alternating current impedance electrochemical modeling of lithium-ion positive electrodes. Journal of the Electrochemical Society, 2005. 152(7): p. A1409.
78. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 2000. 89(2): p. 206-218.
79. Nobili, F., et al., An AC Impedance Spectroscopic Study of Li x CoO2 at Different Temperatures. The Journal of Physical Chemistry B, 2002. 106(15): p. 3909-3915.
80. Wang, C. and J. Hong, Ionic/electronic conducting characteristics of LiFePO4 cathode materials: The determining factors for high rate performance. Electrochemical and solid-state letters, 2007. 10(3): p. A65.
81. Wang, B., et al., Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries? Journal of Materials Chemistry A, 2021. 9(23): p. 13540-13551.
82. Huang, J., Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochimica Acta, 2018. 281: p. 170-188.
83. Lee, Y.K., The effect of active material, conductive additives, and binder in a cathode composite electrode on battery performance. Energies, 2019. 12(4): p. 658.
84. Zheng, H., et al., Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. The Journal of Physical Chemistry C, 2012. 116(7): p. 4875-4882.
85. Azhar, B., et al., Polymers with Cyanoethyl Ether and Propanesulfonate Ether Side Chains for Solid-State Li-Ion Battery Applications. ACS Applied Energy Materials, 2023. 6(6): p. 3525-3537.
86. Zhang, H., J. Xu, and J. Zhang, Surface-coated LiNi0. 8Co0. 1Mn0. 1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries. Frontiers in Materials, 2019. 6: p. 309.
87. Zhang, F., et al., Collaborative modification based on Ti-ion effectively improves the electrochemical performance of Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials. Ionics, 2021. 27: p. 2367-2380.

無法下載圖示 全文公開日期 2025/09/26 (校內網路)
全文公開日期 2025/09/26 (校外網路)
全文公開日期 2025/09/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE