簡易檢索 / 詳目顯示

研究生: 李其陵
Chi-Ling Li
論文名稱: 應用於微電網之數位控制雙向直流-直流轉換器
A Digitally-Controlled Bidirectional DC-DC Converter for Micro-grid System Applications
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 林景源
Jing-Yuan Lin
呂錦山
Ching-Shan Leu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 雙向轉換器模組充/放電交錯式操作均流CAN微電網
外文關鍵詞: Bidirectional DC/DC converter, charging/discharging, interleaved operation, current sharing, CAN, micro-grid system.
相關次數: 點閱:358下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在研製應用於微電網電池充放電系統之雙向直流-直流轉換器之並聯模組,此並聯模組可對電池組進行充放電,並以數位控制實現充放電策略及利用CAN通訊實現均流控制。電路由兩級雙向直流-直流轉換器組成,電路之架構前級採用全橋串聯諧振轉換器,後級採用交錯式降/升壓型轉換器,其操作原理與設計考量皆於本論文中詳細探討。最後實作完成一台18.8kW之雙向隔離型直流-直流轉換器模組。


This thesis aims to study and develop a bidirectional DC-DC charger/discharger converter module for battery charger/discharger systems. This module can be parallel and the digital controller is used to realize charging/discharging strategy and current sharing with CAN. The prototype circuit consists of two-stage bidirectional DC-DC converters. The first and second stage employ Series Resonant Converter and interleaved buck/boost respectively. Operating principles and design considerations are discussed in detail. A 18.8kW prototype converter module was implemented.

摘 要 iii Abstract iv 誌 謝 v 目 錄 vi 圖索引 ix 表索引 xii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文內容大綱 2 第二章 系統架構與轉換器模組介紹 3 2.1 微電網系統簡介 3 2.1.1微電網系統架構 4 2.1.2電池充放電策略 5 2.1.3單台轉換器模組簡介 7 2.2 全橋串聯諧振轉換器 8 2.2.1 R-L-C串聯諧振電路 8 2.2.2 全橋串聯諧振電路 11 2.2.3 全橋串聯諧振轉換器之功率級電路分析 26 2.3 交錯式降/升壓型轉換器 33 2.3.1交錯式降/升壓型轉換器推導 33 2.3.2 電流漣波抵銷 41 2.4 均流方法探討 43 2.4.1電壓下降法 46 2.4.2主動均流法 51 第三章 數位系統設計 60 3.1 數位信號處理器TMS320F28035簡介 60 3.1.1 TMS320F28035 60 3.1.2 Enhanced Controller Area Network 簡介 61 3.2 程式流程規劃 63 3.2.1 程式初始化流程圖 63 3.2.2 控制方塊圖 64 3.2.2 充電模式程式流程圖 66 3.2.3 放電模式程式流程圖 69 3.4.2 直接主僕均流法 71 第四章 電路參數設計 72 4.1串聯諧振轉換器功率元件設計 72 4.1.1 諧振槽參數設計 73 4.1.2 功率開關設計 74 4.2 交錯式降/升壓轉換器設計 76 4.2.1 電感設計 76 4.2.2 輸出電容設計 77 4.2.2 功率開關設計 79 4.3 量測元件設計 80 4.3.1 電壓取樣電路 80 4.3.2 電流取樣電路 82 第五章 實驗結果與波形 84 5.1.1 實驗波型圖 84 5.1.2 實測數據 90 第六章 結論與未來展望 95 6.1 結論 95 6.2 未來展望 95 參考文獻 97

[1] 孫清華編譯,最新可充電電池技術大全,全華科技圖書股份有限公司,民國92年
[2] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, Third Edition, John Wiley & Sons Inc., 2003
[3] L. Balogh, “Paralleling Power-Choosing and Applying the Best Technique,” Unitrode-seminar, 2003
[4] S. Luo, Z. Ye, R. Lin and F. C. Lee, ”A Classification and Evaluation of Parallel Methods for Power Supply Modules,” CPES Seminar’98, PP. 221-231, 1998
[5] M. Jordan, “UC3907 Load Share IC Simplifies Parallel Power Supply Design, ” Unitrode Application Note U129, 1991-1996
[6] C. Jamerson, C. Mullett, “Parallel Power Supplies via Varuous Droop Methods, ” HFPC’94, pp. 68-76, 1994
[7] B. T. Irving and M. M. Jovanovic, “Analysis design and performance evaluation of droop current-sharing method,” Proc. of IEEE APEC’00, pp. 235-241, 2000
[8] J. S. Glaser, “Output plane analysis of load-sharing in multiple module converter systems,” Proc. of IEEE Trans. on Power Electronoics, pp. 43-50, 1994.
[9] V. J. Thottuvelil, G. C. Verghese, “Stability Analysis of Parallel DC/DC Converters with Active Current Sharing.” Proc. of IEEE PESC’96, pp.1080-1086, 1996.
[10] T. Kohama, M. Wakamatsu, T. Ninomiya, and M. Shoyama, “Static and Dynamic Response of a Parallel-Module High Power Factor Converter System with Current-Balancing Controllers.” Proc. of IEEE PESC’96, pp.1198-1203, 1996.
[11] K. T. Small, “Single Wire Current Share Paralleing of Power Supply.” US PATENT, Patent Number 4,717,833, Jan. 5, 1998.
[12] T. Kohama, M. Shoyama, “Dynamic Analysis of Parallel-Module Converter System with Current Balance Controller,” Proc. of IEEE INTELEC’94, pp. 190-195, 1994.
[13] STMicroelectronics, “LM358 Low Power Dual Operational Amplifiers,” Data Sheet, Apr. 2012.
[14] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th Edition. New York: Oxford University Press, 2004, pp. 82-83.
[15] Texas Instruments, “TMS320x2802x, 2803x Piccolo Analog to Digital Converter (ADC) and Comparator,” Reference Guide, Dec. 2011.
[16] Asea Brown Boveri, “MP and EL industry Current Sensors,” Data Sheet.
[17] Koulin Wu, Qianhong Chen, Ke Jin, and Xinbo Ruan, “Integrated Magnetic for Hybrid Full-Bridge Three-Level LLC Resonant Converter,” ICEMS, pp. 1937 - 1941, 17-20 Oct. 2008.
[18] Ke Jin, and Xinbo Ruan, “Hybrid Full-Bridge Three-Level LLC Resonant Converter- A Novel DC-DC Converter Suitable for Fuel Cell Power System,” PESC, pp. 361 - 367, 16-16 June 2005.
[19] Xiucheng Huang, Jianfeng Wang, Junming Zhang, and Zhaoming Qian, “A Hybrid Driving Scheme for Full-Bridge Synchronous Rectified LLC Resonant DC/DC Converter,” APEC, pp. 579 - 584, 6-11 March 2011.
[20] Xiucheng Huang, Jianfeng Wang, Junming Zhang, and Zhaoming Qian, “A Hybrid Driving Scheme for Full-Bridge Synchronous Rectified LLC Resonant DC/DC Converter,” APEC, pp. 579 - 584, 6-11 March 2011.
[21] Ray-Lee Lin, and Chiao-Wen Lin, “Design Criteria for Resonant Tank of LLC DC-DC Resonant Converter,” IECON, pp. 427 - 432, 7-10 Nov. 2010.
[22] Jee-Hoon Jung, Ho-Sung Kim, Jong-Hyun Kim, Myoung-Hyo Ryu, and Ju-Won Baek, “High Efficiency Bidirectional LLC Resonant Converter for 380V DC Power Distribution System Using Digital Control Scheme,” APEC, pp. 532 - 538, 5-9 Feb. 2012.
[23] Dr. Conal Watterson, “Controller Area Network (CAN) Implementation Guide,” Application Note, 2012.
[24] “CM200DY-24NF,” Data Sheet, Mitsubishi, Jul. 2004.

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE