簡易檢索 / 詳目顯示

研究生: 謝秉志
Bing-Zhi Hsieh
論文名稱: 窄頻物聯網之上行排程系統
Uplink Scheduler in Narrowband Internet of Things (NB-IoT) Systems
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 鄭瑞光
Ray-Guang Cheng
呂政修
Jenq-Shiou Leu
陳仁暉
Jen-hui Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 34
中文關鍵詞: 窄頻物聯網增強覆蓋率低複雜度裝置排程與資源分配
外文關鍵詞: Narrowband Internet of Things (NB-IoT), coverage enhancement, low complexity devices, scheduling and resource allocation
相關次數: 點閱:271下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 窄頻物聯網是第三代合作夥伴計劃用於支援廣域物聯網應用的標準。此標準的特性包含低複雜度設備,高覆蓋率,長電池壽命,以及大量裝置連結。本篇論文提出一套上行排程系統,藉由不同方法評估這套系統的上行資源利用率以及不同範圍覆蓋率下的裝置延遲。在本文中,我們提出基於不同涵蓋範圍下的裝置優先權的排程;找到比較適合的下行控制通道週期使得延遲能夠降低。該效能優化的可以藉由模擬結果得到驗證。


    Narrowband Internet of Things (NB-IoT) is a new access technology introduced by 3GPP. The targets of this new radio interface include low complexity devices, high coverage (20-dB+), long device battery life (more than 10 years), and massive connection. This work presents an Uplink (UL) scheduler model to estimate UL Channel resource utilization and average delay of each device for three coverage enhancement (CE) levels in NB-IoT. In this paper, we propose a packet scheduler in NB-IoT systems and focus on uplink (UL) scheduler; a sorting strategy to decide NB-IoT device priority base on coverage enhancement (CE) level; a favorable period configuration with a superior performance.

    論文摘要 2 Abstract 3 Table of Contents 4 List of Figures 5 List of Tables 7 Chapter 1 Introduction 8 Chapter 2 NB-IoT System Architecture 12 Chapter 3 System Model 15 Chapter 4 Proposed Approach 23 A. Low complexity DL subframe determination 23 B. Consideration of PP for three CE levels 23 C. Sorting strategy based on CE level 24 D. Consideration of NPUSCH resource allocation 25 Chapter 5 Numerical Results 26 A. Performance Metrics 26 B. Simulations set-up 26 C. Performance evaluation 27 Chapter 6 Conclusion 33 References 34

    [1]. 3GPP TS 36.321, “Medium Access Control (MAC) Protocol Specification,” V13.2.0, Jun. 2016.
    [2]. 3GPP TS 36.331, “Radio Resource Control (RRC) Protocol Specification,” V14.1.0, Dec. 2016.
    [3]. 3GPP TS 45.820, “Cellular System Support for Ultra-Low Complexity and Low Throughput Internet of Things (CIoT),” V13.1.0, Nov. 2015.
    [4]. 3GPP TS 36.211, “Physical Channels and Modulation Protocol Specification,” V13.1.0, Nov. 2015.
    [5]. 3GPP TS 36.213, “Physical Layer Procedures Protocol Spec.,” V13.1.0, Nov. 2015.
    [6]. Rohde & Schwarz, “Narrowband Internet of Things Whitepaper,” 2016.
    [7]. Small Cell Forum, “FAPI and nFAPI Specifications,” May. 2017.
    [8]. Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grövlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi, “A Primer on 3GPP Narrowband Internet of Things (NB-IoT),” IEEE Communications Magazine, vol. 55, no. 3, pp. 117-123, Mar. 2017..
    [9]. R. Ratasuk, B. Vejlgaard, N. Mangalvedhe and A. Ghosh, “NB-IoT system for M2M communication,” IEEE Wireless Communications and Networking Conference, Doha, 2016, pp. 1-5.
    [10]. N. Mangalvedhe, R. Ratasuk and A. Ghosh, “NB-IoT deployment study for low power wide area cellular IoT,” IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, 2016, pp. 1-6.
    [11]. C. Yu, L. Yu, Y. Wu, Y. He and Q. Lu, “Uplink Scheduling and Link Adaptation for Narrowband Internet of Things Systems,” IEEE Access, vol. 5, no. , pp. 1724-1734, 2017.
    [12]. R. Boisguene, S. C. Tseng, C. W. Huang and P. Lin, "A survey on NB-IoT downlink scheduling: Issues and potential solutions," 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 2017, pp. 547-551

    QR CODE