簡易檢索 / 詳目顯示

研究生: 甘嘉瑋
Chia-Wei Kan
論文名稱: 超音波檢測技術評估水泥漿體之凝結特性
An Evaluation on Setting Properties of Fresh Cement Pastes with Ultrasonic Reflection Technique
指導教授: 張大鵬
Ta-Peng Chang
王鶴翔
Helsin Wang
口試委員: 王仲宇
Chung-Yue Wang
林宜清
Yi-Ching Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 165
中文關鍵詞: 水泥脈衝式橫向超音波檢測法凝結性質支持向量機
外文關鍵詞: cement, congealing quality, pulse-echo overlap method PEO, Support Vector Machine SVM
相關次數: 點閱:285下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以橫向超音波技術,檢測三種水灰比(0.25、0.3及0.4)與二種水泥種類(波特蘭一型水泥與高鋁水泥)的漿體新拌性質,藉由脈衝式橫向超音波檢測與維卡針針入度實驗,配合訊號處理最佳化程序,建立橫向反射性質與凝結特性關係,可應用此一簡便之超音波監測技術,評估混凝土構造物之拆模時間,提升施工品質與修護效能。本研究結果顯示:(1).隨著新拌水泥漿硬固,所有水灰比與水泥種類,進入水泥漿體的橫波透射量逐漸增大,使得反射波能量減小,前四個反射波(R1、R2、R3、R4)振幅值與反射比均隨時間增加呈現減少趨勢;(2).水灰比0.25至0.4之波特蘭水泥漿,初凝之第一至第四振幅值分別升高102%、80%、60%與19%,終凝之第一至第四振幅值分別升高140%、124%、98%與47%;(3).第三反射比曲線均有兩個下降停頓區,可用以判釋新拌水泥漿之初凝與終凝狀態;(4).據支持向量機凝結狀態分析,單一因子(R2/R1)之正確率與其它多因子組合結果相當,即僅擷取前2個反射波,進行訊號處理最佳化與反射性質判
    釋,獲得相當可靠的凝結狀態分析結果,大幅降低訊號處理工作量,
    並有效的提升判釋效率。


    In this research, shear ultrasonic reflection technique is conduced to monitor setting properties in fresh cement pates with 3 different water-to-cement (w/c) ratios, 0.25, 0.3, and 0.4, and 2 cement types, Portland cement type I and aluminate cement. The relations between shear ultrasonic refection characteristics and setting properties are established by using pulse-echo overlap method and Vicat needle penetration test through signal processing optimization. In future, such an ultrasonic monitoring technique can conveniently evaluate the key time for form removal in reinforced concrete structures in order to improve the construction quality and retrofitting efficiency. Four conclusions can be drawn as the following. (1). During the setting period of fresh cement pastes, the reflection values of shear ultrasonic waves decrease due to more transmission into hardening pastes. The reflection peak amplitude and reflection ratios of the first 4 reflected shear waves (R1, R2, R3, and R4) decrease as setting time increases for all w/c ratios and cement types. (2). The reflection peak amplitudes of the first 4 reflected shear waves at initial setting rise 102%, 80%, 60%, and 19%, respectively, for w/c ratios various from 0.25 to 0.4. The reflection peak amplitudes of the first 4 reflected shear waves at finial setting rise 140%, 124%, 98%, and 47%, respectively, as well. (3). Two pause terrains corresponding to initial and final setting points are found on the decreasing third reflection ratio curves. This characteristic can be regarded as a good identification index to evaluate setting state in fresh pastes. (4). Setting state analysis with support vector machine based on single factor (R2/R1) has a similar accuracy to the results based on multiple factors. Therefore, using the signal information of the first two reflected shear waves (R1 and R2) provides reliable results on identifying the setting state in fresh pastes. A significant decrease of workload on signal processing is expected as using shear ultrasonic reflection technique monitoring the setting properties in fresh cement pastes.

    中文摘要 I 英文摘要 III 誌 謝 V 總目錄 VI 表目錄 IX 圖目錄 XI 第一章 緒論 1 1-1 研究背景 1 1-2 研究項目與步驟 2 1-3 論文內容 3 第二章 文獻回顧 6 2-1 水泥性質 6 2-1.1 波特蘭水泥 6 2-1.2 高鋁水泥 6 2-1.3 水化現象 7 2-1.4 水化凝結作用 10 2-2 波傳性質 10 2-2.1 波傳種類 10 2-2.2 音阻抗 12 2-2.3 反射、折射和透射之關係 14 2-2.4 衰減 15 2-2.5 波於三態中之衰減特性 16 2-3 超音波 18 2-4 水泥基材新拌性質之超音波檢測發展 20 2-4.1 縱向超音波之特性 20 2-4.2 橫向超音波之特性 20 2-5 訊號處理 22 2-5.1 傅立葉轉換 22 2-5.2 濾波器 23 2-5.2.1 有限脈衝響應濾波器 24 2-5.2.2 無限脈衝響應濾波器 24 2-5.2.3 經驗模態分解濾波法 25 第三章 實驗規劃 37 3-1 實驗內容 37 3-2 實驗材料 37 3-3 實驗儀器與軟體 38 3-3.1 實驗儀器 38 3-3.2 軟體 43 3-4 實驗參數 44 3-5 實驗項目與步驟 45 3-5.1 實驗項目 45 3-5.2 實驗步驟 46 第四章 訊號處理最佳化 70 4-1 介紹 70 4-2 底板材質選用 70 4-3 訊號處理之擷取範圍與方式 72 4-4 濾波法選用 73 4-5 頻率域濾波強化 75 4-6 結要 76 第五章 實驗結果分析與討論 85 5-1 量測底板之衰減係數特性 85 5-2 波特蘭水泥漿新拌性質 88 5-2.1 反射波頻譜與可貫入深度 88 5-2.2 頻譜反射比 89 5-2.3 水灰比與凝結特性 91 5-3 高鋁水泥漿新拌性質 92 5-3.1 反射波頻譜與可貫入深度 92 5-3.2 頻譜反射比 94 5-4 水泥漿硬固性質 95 5-4.1 動態共振頻率實驗 95 5-4.2 超音波波速實驗 97 5-4.3 抗壓強度實驗 98 第六章 以支持向量機判釋水泥漿凝結狀態分類 124 6-1 支持向量機簡介 124 6-2 支持向量機判釋 125 6-2.1 目的 125 6-2.2 支持向量機分類過程 125 6-2.3 支持向量機評估結果分析 127 6-3 結要 127 第七章 結論與建議 133 7-1 結論 133 7-1.1 訊號處理最佳化 133 7-1.2 脈衝式橫向超音波檢測法與針入度實驗之關係 134 7-1.3 SVM分析 137 7-2 建議 138 參考文獻 140 附錄A 水泥漿新拌性質與超音波反射之關係 146 附錄B 水泥漿硬固性質-敲擊回音法實驗 159 附錄C 支持向量機實驗資料數量 163 作者簡介 165

    1. 中國國家標準(1996),「CNS13548 鋁質水泥」。
    2. 中國國家標準(1996),「CNS61 波特蘭水泥」。
    3. 中國國家標準(1996),「CNS786 水硬性水泥凝結時間檢驗法(費開式針法)」。
    4. 王玉萍(2003),「應用損傷力學與超音波檢測對含裂縫混凝土損傷評估之研究」,碩士論文,中華大學土木工程研究所。
    5. 朱文賓(2002),「超音波掃瞄檢測技術與應用研究」,碩士論文,元智大學機械工程系。
    6. 吳慶芳(2008),「專案成功度動態預測-應用演化式支持向量機推論模式」,碩士論文,國立台灣科技大學營建工程系。
    7. 李文通(2008),「深開挖壁體變形預測-應用演化式支持向量機推論模式」,碩士論文,國立台灣科技大學營建工程系。
    8. 林佳慶(2002),「利用Z域方法分析及合成平行耦合微帶線濾波器」,碩士論文,國立台灣科技大學電子工程系。
    9. 林傳生、李佩謙(1996),數位訊號處理器簡介及應用,台北,全華科技圖書股份有限公司,第4-19~4-24頁。
    10. 紀郁芳(2004),「超音波脈波訊號之小波分析」,碩士論文,朝陽科技大學營建工程系。
    11. 祝同江(1993),工程數學-積分變換,台北,凡異出版社。
    12. 張文宗(2003),「鋁渣資源化剩餘物之再利用探討」,碩士論文,國立成功大學資源工程學研究所。
    13. 張治泰、邱平(2005),超音波在混凝土質量檢測中的應用,化學工業出版社。
    14. 張獻元(2002),「層狀混凝土版波傳行為與材料性質之探討」,碩士論文,國立台灣科技大學營建工程系。

    15. 許寶琮(2006),「短時頻分析於表面波譜法應用之初步探討」,碩士論文,國立成功大學土木工程研究所。
    16. 陳柏存(2008),「以表面波譜法與支持向量機評估高溫損傷混凝土之性質」,博士論文,國立台灣科技大學營建工程系。
    17. 馮紀恩,「非破壞性檢驗」,工業月刊。
    18. 黃兆龍(1999),混凝土性質與行為,台北,詹氏書局。
    19. 黃思堯(2003),「應用超音波量測三層材料系統內含固體或液體在不同環境下的特性研究」,碩士論文,國立台灣大學機械工程系。
    20. 黃啟貞(1980),超音波檢測試驗法,台北,中華民國非破壞檢測協會。
    21. 楊志強(2001),「混凝土中水泥漿和顆粒骨材界面特性之研究」,碩士論文,國立交通大學土木工程研究所。
    22. 廖義宏(2008),「建築工程損失機會預測-應用演化式支持向量機推論模式」,碩士論文,國立台灣科技大學營建工程系。
    23. 劉信宏(1994),「超音波在混凝土中波傳行為之探討與應用」,碩士論文,中原大學土木工程研究所。
    24. 蕭家孟(1999),「以應力波檢測混凝土內部鋼筋保護層厚度之研究」,博士論文,國立中興大學土木工程研究所。
    25. 蘇志晃(2003),「超音波檢測應用於鋼筋混凝土結構內部成像之研究」,碩士論文,國立中正大學地震研究所。
    26. Aggarwal, Y. (2007), “Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools,” Proceedings of World Academy of Science, Engineering and Technology, Vol. 26, pp.253-256.
    27. Akkaya, Y., Voight, T., and Subramaniam, K.V., and Shah, S.P. (2003), “Nondestructive Measurement of Concrete Strength Gain by an Ultrasonic Wave Reflection Method,” Materials and Structures, Vol. 36, No. 262, pp. 507-514.
    28. Anderson, D.A. and Seals, R.K. (1981), “Pulse Velocity as Predictor of 28- and 90-day Strength,” ACI Materials Journal, Vol. 78, pp. 116-122.
    29. Bhattacharya, B. and Solomatine, D.P. (2006), “Machine Learning in Soil Classification,” Neural Networks, Vol. 19, No. 3, pp. 186-195.
    30. Blitz, J. and Simpson, G. (1996), Ultrasonic Methods of Non-Destructive Testing, Chapman and Hall.
    31. Burges, C.J.C. (1998), “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, Vol. 2, No. 2, pp. 121-167.
    32. Chang, C.-C. and Lin, C.-J. (2001), “LIBSVM: A Library for Support Vector Machines,” software available at website http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    33. Chen, B.-T., Chang, T.-P., Shih, J.-Y., and Wang J.-J. (2009), “Estimation of Exposed Temperature for Fire-damaged Concrete using Support Vector Machine,” Computational Materials Science, Vol. 44, No. 3, pp. 913-920.
    34. Chen, S.-T. and Yu, P.-S. (2007), “Pruning of Support Vector Networks on Flood Forecasting,” Journal of Hydrology, Vol. 347, No. 1-2, pp. 67-78.
    35. Chotard, T., Gimet-Breart, Smith, N.A., Fargeot, D., Bonnet, J.P., and Gault, C. (2001), “Application of Ultrasonic Testing to Describe the Hydration of Calcium Aluminate Cement at Early Age,” Cement and Concrete Research, Vol. 30, No. 3, pp. 405-412.
    36. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., and Haussler, D. (2000), “Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data,” Bioinformatics, Vol. l6, No. 10, pp. 906-914.
    37. Keating, J., Hannant, D.J., and Hibbert, A.P. (1989), “Comparison of Shear Modulus and Pulse Velocity Techniques to Measure the Build-Up of Structure in Fresh Cement Pastes Used in Oil Well Cementing,” Cement and Concrete Research, Vol. 19, No. 4, pp. 554-566.
    38. Krautkrämer, J. and Krautkrämer, H. (1990), Ultrasonic Testing of Materials, Berlin, Germany: Springer-Verlag, p. 111.
    39. Kerheta, A., Raffettob, M., Bonia, A., and Massa, A. (2006), “A SVM-Based Approach to Microwave Breast Cancer Detection, Engineering Applications of Artificial Intelligence,” Engineering Applications of Artificial Intelligence, Vol. 19, No. 7, pp. 807-818.
    40. Lasič, D.D. and Stepišnik, J. (1984), “An Investigation of Osmotic Model Cement Curing by Ultrasonics,” Cement and Concrete Research, Vol. 14, No. 7, pp. 345-348.
    41. Lee, H.K., Lee, K.M., Kim, Y.H., Yim, H., and Bae, D.B. (2004), “Ultrasonic In-Situ Monitoring of Setting Process of High-Performance Concrete,” Cement and Concrete Research, Vol. 34, No. 4, pp. 631-640.
    42. Leopold, E. and Kindermann, J. (2002), “Text Categorization with Support Vector Machines- How to Represent Texts in Input Space,” Machine Learning, Vol. 46, No. 1-3, pp. 423-444.
    43. Misiti, M., Misiti, Y., Oppenheim, G., and Poogi, J.M. (1997), Wavelet Toolbox User’s Guide, The MathWorks.
    44. Naik, T.R., Malhotra, V.M., and Popovics, J.S. (2004), “The Ultrasonic Pulse Velocity Method,” in CRC Handbook on Nondestructive of Concrete, edited by Malhotra, V.M. and Carino, N.J., Boca Raton, FL: CRC Press, pp. 8-1~8-19.
    45. Ni, Y.Q., Hua, X.G., Fan, K.Q., and Ko, J.M. (2005), “Correlating Modal Properties with Temperature Using Long-Term Monitoring Data and Support Vector Machine Technique,” Engineering Structures, Vol. 27, No. 12, pp. 1762-1773.
    46. Oppenheim, A.V. and Schafer, R.W. (1998), Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall.
    47. Öztürk, T., Rapoprt, J., Popovics, J.S., and Shah, S.P. (1999), “Monitoring the Setting and Hardening of Cement-Based Materials with Ultrasound,” Concrete Science and Engineering, Vol. 1, pp. 83-91.
    48. Popovics, S. (1998), Strength and Related Parameters of Concrete: A Quantitative Approach, New York, NY: John Wiley & Sons, Inc., p. 59.
    49. Popovics, S., Rose, J.L., and Popovics, J.S. (1990), “The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Research, Vol. 20, No. 2, pp. 259-270.
    50. Rapoprt, J., Popovics, J.S., Subramaniam, K.V., and Shah, S.P. (2000), “The Use of Ultrasound to Monitor the Stiffening Process of Portland Cement Concrete with Admixtures,” ACI Materials Journal, Vol. 97, pp. 675-683.
    51. Reinhardt, H.W. and Grosse, C.U. (1996), “Setting and Hardening of Concrete Continuously Monitoring by Elastic Waves,” NDTnet, Vol. 1, No. 7.
    52. Shih, J. and Chen, L. (2002), “Application of Concrete Nondestructive Techniques on Construction Engineering,” The 2nd Taiwan Formosa Enterprises Engineering and Technology Conference, Taipei, Taiwan.
    53. Siddique, R., Aggarwal, P., Aggarwal, Y., and Gupta, S.M. (2008), “Modeling Properties of Self-Compacting Concrete: Support Vector Machines Approach,” Computers and Concrete, Vol. 5, No. 5.
    54. Stepišnik, J., Lukač, M., and Kocuvan, I. (1981), “Measurement of Cement Hydration by Ultrasonics,” Ceramic Bulletin, Vol. 60, No. 4, pp. 481-483.
    55. Subramaniam, K.V. and Lee, J. (2003), “Ultrasonic Measurement of Early Age Viscoelastic Properties of Cementitious Materials,” ASCE 16th Engineering Mechanics Conference, Seattle, WA.
    56. Subramaniam, K.V., Lee, J., and Christensen, B.J. (2005), “Monitoring the Setting Behavior of Cementitious Materials Using One-Sided Ultrasonic Measurements,” Cement and Concrete Research, Vol. 35, No. 5, pp. 850-857.
    57. Sun, Z., Ye, G, Voight, T., Shah, S.P., and van Breugel, K. (2004), “Microstructural Aspects of Cement Hydration—Ultrasonic Waves and Numerical Simulation,” The 5th International Symposium in Civil Engineering, Delft, The Netherlands, pp. 1-9.
    58. Sun, Z., Ye, G, Voight, T., Shah, S.P., and van Breugel, K. (2004), “Early Age Properties of Portland Cement Pastes Investigated with Ultrasonic Shear Waves and Numerical Simulation,” RILEM International Symposium: Advances in Concrete through Science and Engineering, Evanston, IL.
    59. Uchikawa, H., Hanehara, S., and Hirao, H. (1997), “Influence of Microstructural Change under Stress on the Strength-Related Properties of Hardened cement Mortar and Paste,” Advanced Cement-Based Materials, Vol. 6, Nos. 3-4, pp. 87-98.
    60. Valič, M.I. (2000), “Hydration of Cementitious Materials by Pulse Echo USWR Method, Apparatus and Application Examples,” Cement and Concrete Research, Vol. 30, No. 10, pp. 1633-1640.
    61. Voigt, T., Akkaya, Y., and Shah, S.P. (2003), “Determination of Early Age Mortar and Concrete Strength by Ultrasonic Wave Reflections,” Journal of Materials in Civil Engineering, ASCE, Vol. 15, No. 3, pp. 247-254.
    62. Voigt, T., Malonn, T., Shah, S.P. (2005), “Green and Early Age Compressive Strength of Extruded Cement Mortar Monitored with Compression Tests and Ultrasonic Techniques,” Cement and Concrete Research, Vol. 36, No. 5, pp. 858-867.
    63. Voigt, T. and Shah, S.P. (2003), “Nondestructive Monitoring of Setting and hardening of Portland Cement Mortar with Sonic Methods,” Proceedings of the 6th International Symposium on Non-Destructive Testing in Civil Engineering (NDT-CE 2003), Berlin, Germany.
    64. Voigt, T. and Shah, S.P. (2002-2003), “Nondestructive Testing of Early Age Concrete,” Cementing the Future, Center for Advanced Cement-Based Materials, Vol. 14, No. 1, pp. 4 and 5.
    65. Voigt, T., Ye, G, Sun, Z., Shah, S.P., and van Breugel, K. (2005), “Early Age Microstructure of Portland Cement Mortar Investigated by Ultrasonic Shear Waves and Numerical Simulation,” Cement and Concrete Research, Vol. 35, No. 5, pp. 858-866.
    66. Yang, M.H., Roth, D., and Ahuja, N. (2002), “A Tale of Two Classifiers: SNoW vs. SVM in Visual Recognition,” Computer Vision- Eccv 2002``,Part Ⅳ , pp. 685-699.
    67. Ye, G, Sun, Z., Voight, T., van Breugel, K. and Shah, S.P., (2004), “A Micromechanic Model for Characterization of Cement Paste at Early Age with Experiments,” RILEM International Symposium: Advances in Concrete through Science and Engineering, Evanston, IL.
    68. Ye., G., van Breugel, K., and Fraaij, A.L.A. (2003), “Experimental Study and Numerical Simulation on the Formation of Microstructure in Cementitious Materials at Early Age,” Cement and Concrete Research, Vol. 33, No. 2, pp. 233-239.

    QR CODE