簡易檢索 / 詳目顯示

研究生: 廖小惠
Hsiao-Hui Liao
論文名稱: 壓電樑應用於減振與振能回收之研究
Study of A PZT Beam for Vibration Absorption and Energy Harvesting
指導教授: 黃世欽
Shyh-Chin Huang
口試委員: 徐茂濱
Mau-Pin Hsu
黃以玫
Yi-Mei Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 63
中文關鍵詞: 吸振器壓電材料振能回收
外文關鍵詞: absorber, piezoelectric materials, power harvesting
相關次數: 點閱:264下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主旨在於採用由壓電材料所構成之三層樑搭配回收電路形成一振能回收吸振器,探討吸振及振能回收兩功能間之相互影響關係,並藉由調配系統參數使吸振器可兼顧吸振與振能回收之功能。其概念是利用壓電材料之力電耦合特性,吸收主結構之振動能量並轉換為電能,再將回收所得之能量加以運用。
一般傳統的吸振器,於設計上大多僅考慮其吸振效果,而所吸收到的能量往往以聲、熱,或其他動能等形式消散掉,實為之可惜;因此,本文運用壓電材料之力電耦合特性,將吸收所得之振動能量轉換為電能並回收利用,以響應環保概念,並探討吸振與振能回收兩功能間之相互影響關係。此外,吸振器之吸振與振能回收效能會受設計參數影響,因此本文制定吸振指標與振能回收指標,並藉由改變參數來探討兩指標之間的變化情形,並將結果整理歸納以供使用者設計參考。最後本研究將製作壓電樑吸振器之實體模型,輔以實驗驗證其振能回收之效能,以證實理論模擬之正確性及可信度。


In this thesis, the absorption and power harvesting characteristic of vibration absorber with PZT is presented. The main ideal of this thesis is to use the characteristics of electro-mechanical coupling in piezoelectric materials, and transform the absorption mechanical energy to electric energy. A vibration absorption system is modeled and the index of absorption and power harvesting is derived. The vibration absorption model is an Euler-Bernoulli beam with PZT bounded on its both surfaces and shunted by a resistor circuit as power harvesting system. Use Assume mode method and separation variable method to derive the Lagrange equation of motion of the system. Absorption index and power harvesting index is derived to characterize the design parameters of the system. Via changing the parameters of the lump mass ratio, DVA mass ratio and resistance to discuss the variability between absorption index and power harvesting index. Finally, this thesis will construct a reality model to verify the vibration absorption energy efficient in simulation result by experiment.

摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 圖 表 索 引 VII 符 號 索 引 X 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 文章架構 6 第二章 壓電理論簡介 7 2.1 壓電效應 7 2.2 極化處理 9 2.3 壓電材料本構方程式 9 第三章 振能回收吸振器之參數分析 12 3.1 壓電樑型吸振器之運動方程式推導 13 3.2 壓電樑型吸振器之等效電路 21 3.3 振能回收吸振器之等效電路與運動方程式 26 3.3.1 振能回收吸振器之等效電路 27 3.3.2 使用振能回收吸振器之系統運動方程式 28 3.4 定義吸振指標與振能回收指標 29 3.5 參數對吸振指標與振能回收指標之影響 30 3.5.1 振能回收吸振器之設計參數 30 3.5.2 堆化質量比與電阻值對兩指標之影響 33 3.5.3 吸振器質量比與電阻值對兩指標之影響 38 第四章 實驗結果與理論比較分析 45 4.1 實驗設備 45 4.2 壓電樑吸振器之吸振實驗 49 4.2.1主系統之共振頻率量測 49 4.2.2 壓電樑之共振頻率量測 51 4.2.3 具吸振器之系統頻率響應量測 54 4.3 壓電樑吸振器之振能回收量測 55 第五章 結論與未來研究方向 57 5.1 結論 57 5.2 未來研究方向 59 參 考 文 獻 60 附錄A 62 作 者 簡 介 63

[1] J. P. Den Hartog, 1956, Mechanical Vibration, 4th edition, McGraw-Hill, New York.
[2] J. E. Brock, 1946, “A Note on the Damped Vibration Absorber,” Journal of
Applied Mechanics, Vol. 68, pp. A-284.
[3] F. M. Lewis, 1955, “The Extended Theory of the Viscous Vibration Damper,”
Journal of Applied Mechanics, pp. 377-382.
[4] J. C. Snowdon, 1974, “Dynamic Vibration Absorbers That Have Increased
Effectiveness,” Journal of Engineering for Industry, pp. 940-945.
[5] V. A. Bapat and P. Prabhu, 1979, “Optimum Design of Lanchester Damper for a Viscously Damped Single Degree of Freedom System Using Minimum Force Transmissibility Criterion,” Journal of Sound and Vibration, Vol. 67, pp. 113-119.
[6] A. G. Thompson, 1980,“Auxiliary Mass Throw in a Tuned and Damped Vibration Absorber,” Journal of Sound and Vibration, Vol. 70, pp. 481-486.
[7] G. B. Warburton, 1981, “Optimum Absorber Parameters for Minimizing Vibration Response,” Earthquake Engineering and Structural Dynamics, Vol. 9, pp. 251-262.
[8] M. Z. Ren, 2001, “A Variant Design of the Dynamic Vibration Absorber,” Journal of Sound and Vibration, Vol. 254, pp. 762-770.
[9] K. Liu and J. Liu, 2005, “The Damped Dynamic Vibration Absorber: Revisited and New Result,” Journal of Sound and Vibration, Vol. 284, pp. 1181-1189.
[10] C. B. Williams and R. B. Yates, 1996, “Analysis of a Micro-Electric Generator for Microsystems,” Sensor and Actuators A, Vol. 52, pp. 8-11.
[11] S. Roundy, P. K. Wright and J. Rabaey, 2003, “A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes,”Computer Communications, Vol. 26, pp. 1131-1144.
[12] 賴致均,2007,“吸振器之吸振與振能回收之最佳化研究,”國立台灣科技大學碩士學位論文。
[13] 許智淵,2008,“雙懸臂樑吸振器之吸振與振能回收最佳化之研究,”國立台灣科技大學碩士學位論文。
[14] N.N. Rogacheva, C.C. Chou, and S.H. Chang, 1998, “Electromechanical Analysis of a Symmetric Piezoelectric/Elastic Laminate Structure:Theory and Experiment,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.45, No.2, pp.285-294.
[15] S.H. Chang, and C.C. Chou, 1999, “Electromechanical Analysis of an Asymmetric Piezoelectric/Elastic Laminate Structur:Theory and Experiment,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.46, No.2, pp.441-451.
[16] C.Y.K. Chee, L. Tong, and G.P. Steven, 1999, “A Mixed Model for Composite Beams with Piezoelectric Actuators and Sensors,” Smart Materials and Structures, vol.8, pp.417-432.
[17] M. Kommer, 2001, “On the Correction of the Bernoulli-Euler Beam Theory for Smart Piezoelectric Beams,” Smart Materials and Structures, vol.10, pp.668-680.
[18] H.A. Sodano, G. Park, and D.J.inman, 2004, “Estimation of Electric Charge Output for Piezoelectric Energy Harvesting,” Strain, 40, 49-58.
[19] 賴炳佑,2004,“具拘束阻尼層部份覆蓋樑之振動及阻振分析,”國立台灣科技大學碩士學位論文。

QR CODE