簡易檢索 / 詳目顯示

研究生: 林俊一
CHUN-YI LIN
論文名稱: 物聯網之物件自動配置與智慧連接控制
Auto Configuration and Smart Binding Control on IoT Applications
指導教授: 陳俊良
Jiann-Liang Chen
口試委員: 呂學坤
Shyue-Kung Lu
王乃堅
Nai-Jian Wang
林宗男
Tsung-nan Lin
周俊廷
Chun-Ting Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: ZigBee物聯網自動配置智慧連接燈光控制智慧家庭
外文關鍵詞: ZigBee, IoT, Auto-configuration, Smart binding, Light control, Smart home
相關次數: 點閱:231下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於無線通訊技術快速發展,讓物聯網(Internet-of-Things, IoT)概念有機會逐漸被實現。但面對物聯網應用領域廣泛、且物件種類多元,如何達成物件自動配置及提升物件操控性,來降低使用者設定問題及符合節能概念,此皆為物聯網未來可探討之議題。
    本論文針對上述議題提出可行方案,並開發完成「自動配置與智慧連接系統」,以實作呈現所提出之概念,系統主要功能規劃如下:
    1.IoT燈具自動配置:利用接收訊號強度(RSSI)以決定燈具配置區域,或採用範圍配位、子 區域(sub-area)概念進行配置。子區域(sub-area)除提升控制效率外,更換燈具時亦更簡單。
    2.智慧連接控制:設計任意開關、感測器、遙控器…等,可採手動、自動、智慧模式控制IoT燈具,使燈光控制更具彈性與效率,並符合節能訴求。
    3.多功能遙控器:利用單鍵ZigBee設備模擬遙控器,除可由主控台快速設定遙控器來控制IoT燈具外,亦可由遙控器本身設定來控制燈具。藉由互為備援的主控台與遙控器,將可提供更有效率操控平台。
    另外本研究所開發之「自動配置與智慧連接系統」,除驗證上述功能外,亦在實驗環境中,針對其性能做多方面效能分析,其結論摘要如下:
    1.當不同燈具先後擺放於相同位置時,RSSI變動性不大,約在-3dBm範圍內。
    2.當燈具位置不變時,若sub-area範圍設-3dBm,在實驗環境內可配置到相同燈具位址。
    3.RSSI與距離呈非線性,因此sub-area範圍呈不規則狀,移動10cm最大衰減-11dBm。
    4.當進行多燈具配置時,每增加一燈具,平均配置時間約增加2.3秒。


    In recent years, the rapid development of wireless communication technology has led to the gradual realization of the IoT (Internet-of-Things). However, as the number and range of applications of smart objects increase, automatic configuration and the efficiency and flexibility of object-control are important issues in the IoT field. The goal is provide a smart user-friendly interface and highly control while saving energy.
    Accordingly, this thesis proposes a feasible solution in the form of an “Auto-configuration and Smart Binding Control System”. The system and its functions are designed as follows.
    1.IoT Lights auto configuration:A Received Signal Strength Indicator (RSSI) is used to assign lights areas, In addition, we apply sub-area concept to assign the lights in range locations. By doing so, it not only efficiently improves the system control, but allows users to replace lights more easily.
    2. Smart binding control:This system uses flexible switches, a sensor, and a remote control to manipulate the lights. Manual, automatic, and smart modes are utilized to control IoT lights more flexibly and efficiently, saving energy.
    3. Multi-functional remote control:In this system, a one-touch device is used to simulate the remote control. The console platform is easily used to control IoT lights remotely or a remote control can be used to set up the lights. The device and console platform match each other, offering mutual aid and protection platform-controlling.
    With respect to the development of an “Auto-configuration and Smart Binding Control System”, the above features are verified and many aspects of the system performance is evaluated. The following conclusions are drawn.
    1.When different lights were placed in the same position, the RSSI varied insignificantly, over a range of approximately -3dBm.
    2.When the light position is fixed and the sub-area range is set to -3dBm, we can guarantee the lights are configured to the same lights numbers.
    3.Since the RSSI ranging is nonlinear, the sub-area range is irregularly shaped. When the light is moved 10cm apart, the maximum attenuation is -11dBm.
    4.In the auto-configuration of multiple lights, each additional light increases the mean setting time by 2.3 seconds.

    摘要 I Abstract IV 致謝 I 目錄 VII 圖目錄 IX 表目錄 XI 第一章 緒 論 1 1.1 研究動機 1 1.2 研究方法 2 1.3 研究貢獻 3 1.4 論文架構 4 第二章 背景知識 5 2.1 無線感測網路(Wireless Sensor Network, WSN) 5 2.2 ZigBee/IEEE 802.15.4 6 2.2.1 802.15.4實體層(Physical Layer) 7 2.2.2 802.15.4資料連結層(Data Link Layer) 8 2.2.3 ZigBee網路層(Network Layer) 10 2.2.4 ZigBee應用層(Application Layer) 12 2.3 ZigBee IP 13 2.4 接收訊號強度指示(RSSI) 15 2.5 ZLL (ZigBee Light Link ) 16 2.6 IoT (Internet of Things) 18 第三章 系統架構與功能設計 20 3.1 系統架構及軟硬體介紹 20 3.2 封包格式定義說明 24 3.3 功能開發與設計 28 3.3.1 自動配置功能 29 3.3.2 智慧連接控制 30 3.3.3 多功能遙控器 32 第四章 系統驗證與效能分析 34 4.1 驗證環境及使用工具 34 4.2 實測驗證項目 37 4.3 系統效能與價值分析 41 4.3.1 RSSI變動分析 41 4.3.2 配址效能分析 46 4.3.3 研究價值分析 49 第五章 結論與未來展望 51 5.1 結論 51 5.2 未來展望 52 參考文獻 53

    [1] T. Liu and D. Lu,“The Application and Development of IOT, ”Proceedings of the International Conference on Information Technology in Medicine and Education, pp.991-994, 2012.
    [2] N.Khalil, M.R. Abid , D. Benhaddou and M. Gerndt,Wireless Sensors Networks for Internet of Things,” Proceedings of the IEEE International Conference on Intelligent Sensors,Sensor Network and Information , pp.1-6,2014.
    [3] Y. Gadallah, E. Elalamy and M. elTager, “An IP-based Arrangement to Connect Wireless Sensor Networks to the Internet of Things,” Proceedings of the WCNC'14 Track 3 (Mobile and Wireless Networks), pp. 2745-2750, 2014.
    [4] ZigBee Alliance Home Page at http://www.zigbee.org.
    [5] D. Kin, D. Yun and K. Chung, “Context-aware Adaptive Streaming in Web of Objects Environments,” Proceedings of the IEEE World Forum on Internet of Things, pp. 63-64, 2014
    [6] C. Perera, P.P.Jayaraman and A. Zaslavsky,“Sensor Discovery and Configuration Framework for The Internet of Things Paradigm,” Proceedings of the IEEE World Forum on Internet of Things, pp. 94-99, 2014.
    [7] J. Bahi, A. Makhoul and A. Mostefaoui, “Localization and Coverage for High Density Sensor Networks,”Proceedings of the IEEE Conference on Pervasive Computing and Communications Workshops, pp. 295–300, 2007.
    [8] P. Corke, T. Wark, R. Jurdak, H. Wen, P. Valenci and D. Moore, “ Environmental Wireless Sensor Networks, ” Proceedings of the IEEE Invited Paper, pp. 1903-1917, 2010.
    [9] X.Hu,J.Wang, Q.Yu, W. Liu and J. Qin,“A Wireless Sensor Network Based on ZigBee for Telemedicine Monitoring System,”Proceeding of International Conference on Bioinformatics and Biomedical Engineering, pp.1367-1370, 2008.
    [10] C. Gomez and J. Paradells, ” Wireless Home Automation Networks: A Survey of Architectures and Technologies,” Proceedings of the IEEE Communications Magazine, pp.92-101, 2010
    [11] M.C. Shie, P.C. Lin, T.M. Su, P. Chen and A. Hutahaean ,” Intelligent Energy Monitoring System Based on ZigBee-Equipped Smart Sockets,” Proceedings of the IEEE Intelligent Green Building and Smart Grid (IGBSG), pp.1-5, 2014.
    [12] IEEE 802 Working Group, “Standard for Part 15.4: Wireless Medium Access Control(MAC) and Physical(PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs),” ANSI/IEEE 802.15.4, 2006.
    [13] N. Salman, I. Rasool and A.H. Kemp, “Overview of the IEEE 802.15.4 standards family for Low Rate Wireless Personal Area Networks, ”Proceedings of the IEEE Wireless Communication Systems (ISWCS), pp.701-705, 2010.
    [14]J.S. Lee, “Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks, ”Proceedings of the IEEE Transactions on Consumer Electronic,IEEE Transactions on Volume: 52 , Issue: 3 , pp.742-749, 2006.
    [15] C. Gezer and C. Buratti, “A ZigBee Smart Energy Implementation for Energy Efficient Buildings,” Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC Spring), pp.1-5, 2011.
    [16] D.M.Han and J.H.Lim,“Smart home energy management system using IEEE 802.15.4 and zigbee,”Proceedings of the IEEE Transactions on Consumer Electronics, vol.56, issue 3, pp.1403-1410, 2010.
    [17] J. Li, X. Zhu, N. Tang and J. Sui, “Study on ZigBee Network Architecture and Routing Algorithm,” Proceedings of the IEEE International Conference on Signal Processing Systems (ICSPS), pp.389-393, 2010.
    [18] M. Franceschinis, C. Pastrone, M. A. Spirit and C. Borean, ”On the Performance of ZigBee Pro and ZigBee IP in IEEE 802.15.4 Networks,” Proceedings of the IEEE International Workshop on Selected Topics in Mobile and Wireless Computing, pp.83-88, 2013.
    [19]IETF, "IPv6 over Low power WPAN (6lowpan)",http://datatracker.ietf.org/wg/
    6lowpan.
    [20] C.H. Huang, Y.F. Su, Y.T. Su, W.H. Su, J.J. Chen and W.J. Zhou, " Design and Application of ZigBee Wireless Techniques for an Intelligent House Lighting Control System," Proceedings of the IEEE Computer, Consumer and Control (IS3C) International Symposium, pp.19-22, 2014.
    [21] J. Han, C.S Choi, W.K Park, I. Lee and S.H Kim, ”Smart Home Energy Management System Including Renewable Energy Based on ZigBee and PLC,” Proceedings of the IEEE JOURNALS Consumer Electronics, IEEE Transactions on Volume: 60 , Issue: 2 , pp.198-202, 2014.
    [22] K. Kaemarungsi , R. Ranron and P. Pongsoon, “Study of Received Signal Strength Indication in ZigBee Location Cluster for Indoor Localization,” Proceedings of the IEEE International Conference (ECTI-CON), pp.1-6 , 2013.
    [23] A. Golestani, N. Petreska, D. Wilfert and C. Zimmer, “Improving the Precision of RSSI-based Low-Energy Localization Using Path Loss Exponent Estimation,” Proceedings of the IEEE Positioning, Navigation and Communication (WPNC), pp.1-6, 2014.
    [24] Y. Cho, M. Ji, Y. Lee and S. Park, “WiFi AP position estimation using contribution from heterogeneous mobile devices, ”Proceedings of the IEEE Position Location and Navigation Symposium (PLANS), pp. 562–567, 2012.
    [25] Connected Lighting Alliance Home Page at http://www.theconnectedlightingalliance.org.
    [26] T. WANG, B. ZHENG, Z.L LIANG, “The Design and Implementation of Wireless Intelligent Light Control System Base on ZigBee Light Link, ”Proceedings of the IEEE Wavelet Active Media Technology and Information Processing, pp. 122–125, 2013.
    [27] ITU-T SG13, Future networks including cloud computing, mobile and next-generation networks , http://www.itu.int/en/ITU-T/studygroups/2013-2016/13/page
    [28] Institute for Information Industry , http://www.iii.org.tw/Default.aspx.
    [29] D. Singh, G. Tripathi, and A. J. Jara , “A survey of Internet-of-Things: Future Vision, Architecture, Challenges and Services,” Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), pp.287-292, 2014.
    [30] D. Kim, D. Yun, and K. Chung, “Context-aware Adaptive Streaming in Web of Objects Environments,” Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), pp.63-64, 2014.

    QR CODE