簡易檢索 / 詳目顯示

研究生: 李彥青
Yen-Chin Lee
論文名稱: 基於時間依存關係的入侵偵測系統
Intrusion Detection System with Temporal Relationships
指導教授: 鮑興國
Hsing-Kuo Pao
口試委員: 鄧惟中
Wei-Chung Teng
李育杰
Yuh-Jye Lee
陳存暘
Chun-Yang Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 60
中文關鍵詞: 隱藏式馬可夫模型入侵偵測系統圖形模組高階隱藏式馬可夫模型簡易貝氏分類器半監督式學習
外文關鍵詞: Hidden Markov Models, Intrusion Detection System, Graphical Models, High-Order Hidden Markov Models, Naive Bayes, semi-supervised learning
相關次數: 點閱:461下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的社會裡,網路的使用已經是很普遍的。然而,隨著網路的不斷發展,
    我們所要承受的潛在危險也隨之增加。因此,我們需要利用一些機制來避免
    遭遇到這些攻擊。入侵偵測系統-通常用來偵測電腦網路系統是否遭受到異
    常的行為,一旦發現便會立即對系統管理者發出警訊。在本論文中,我們提
    出了利用時間依存度來建立一個有效的入侵偵測系統。除此之外,我們還利
    用半監督式學習的概念來調整我們的模組參數。然而,為了考慮資料的時間
    性關係,我們利用隱藏式馬可夫模型的特性來實作我們的模組。由於隱藏式
    馬可夫模型並不適用於處理多維度的資料。所以,我們結合簡易貝氏分類器
    的特性來解決這個問題。此外,我們利用高階隱藏式馬可夫模型以及混合模
    型(支撐向量機+滑動式視窗)來考慮更多的時間依存關係。從結果中,我們
    可以看到提高時間依存度能有效的幫助我們提高偵測率。最後,我們再利用
    半監督式學習的概念來調整我們的模組參數。藉由這樣的概念,我們便能針
    對各式各樣的環境建立一個有效的入侵偵測系統。


    In society nowadays, the use of Internet becomes more prevalent. However,
    as the Internet developed, it also has a growing number of potential risks.
    We need some mechanisms to help us protecting our systems from these
    risks. An Intrusion Detection System (IDS) is generally used to detect
    anomalous behaviors and give system administrators alarms if it detects
    suspicious behaviors.
    We design an intrusion detection system by considering temporal
    relationships among them, and then use semi-supervised learning with
    EM algorithm to update our model. To consider temporal relationships
    among data, we use a Hidden Markov Model (HMM). To deal with high
    dimensional data, so we combine HMM with Naive Bayes. Also, to consider
    temporal interaction of order higher than one, we adopt high-order
    Markov model and the detection result shows us better performance than
    the result from one-order Markov model. On the other hand, we use the
    result of support vector machine with temporal consideration to compare
    with our experiment result. By the results, we can observe that the temporal
    relationships can really help us to achieve higher detection accuracy.
    Finally, as an adaptive version of our model, we use semi-supervised learning
    with EM algorithm to tune our parameters. By this way, we can train
    a model which can fit to the real environment with adaptive manner.

    1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Our Main Work . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . 5 2 Intrusion Detection Systems 6 2.1 Overview of Intrusion Detection Systems . . . . . . . . . . 6 2.2 Categories of Attacks . . . . . . . . . . . . . . . . . . . . . 7 2.3 Category of Intrusion Detection Systems . . . . . . . . . . 10 2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 HMM, Naive Bayes, and Graphical Model Formulations 16 3.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . 16 3.1.1 Viterbi Algorithm . . . . . . . . . . . . . . . . . . . 19 3.1.2 Forward and Backward Algorithms . . . . . . . . . 21 3.1.3 Baum-Welch Algorithm . . . . . . . . . . . . . . . 25 3.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 Introduction to Naive Bayes . . . . . . . . . . . . . 30 3.2.2 Parameter Estimated for Naive Bayes . . . . . . . . 31 3.3 Hybrid Naive Bayes Hidden Markov Model . . . . . . . . . 32 3.3.1 Extended Baum-Welch Algorithm . . . . . . . . . . 33 3.4 High-Order Hidden Markov Model (HO-HMM) . . . . . . 35 3.5 SVM and SVM with temporal relationship . . . . . . . . . 37 4 Experimental Work 40 4.1 Description for The KDD’99 Dataset . . . . . . . . . . . . 40 4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Experiment Results and Discussions . . . . . . . . . . . . . 46 5 Conclusion and Future Work 55 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    [1] http://www.cert.org/stats/fullstats.html.
    [2] http://www.securityfocus.com/infocus/1514.
    [3] http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/
    docs/attackDB.html.
    [4] http://setminuswww.symantec.com/region/tw/enterprise/article/
    why intrusion detection.html.
    [5] http://www.symantec.com/region/tw/enterprise/article/intrusion
    detection.html.
    [6] http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html.
    [7] http://kdd.ics.uci.edu/databases/kddcup99/task.html.
    [8] N. Abouzakhar, A. Gani, G. Manson, M. Abuitbel, and D. King.
    Bayesian learning networks approach to cybercrime detection. Post-
    Graduate Networking Conference, 2003.
    [9] N.B. Amor, S. Benferhat, and Z. Eliuedi. Naive bayes vs decision
    trees in intrusion detection systems. Proceedings of the 2004 ACM
    symposium ib Applied computing, pages 420–424, 2004.
    [10] J.P. Anderson. Computer Security Threat Monitoring and Surveil-
    lance. James P Anderson Co., April 1980.
    [11] L.E. Baum. A maximization technique occurring in the statistical
    analysis of probabilistic functions of markov chains. The Annals of
    Mathematical Statistics, 41(1):164–171, 1970.
    [12] L.E. Baum. An inequality and associated maximization technique in
    statistical estimation for probabilistic functions of markov processes.
    In In:Oved SHISHA, ed. Inequalities III: Proceedings of the Third
    Symposium on Inequalities, volume 41, pages 1–8, 1972.
    [13] L.E. Baum and J.A. EAGON. An inequality with applications to
    statistical estimation for probabilistic functions of a markov process
    and to a model for ecology. Bulletin of the American Mathematical
    Society, 73:360–363, 1967.
    [14] L.E. Baum and T. Petrie. Statistical inference for probabilistic functions
    of finite state markov chains. The Annals of Mathematical
    Statistics, 37(6):1554–1563, 1966.
    [15] J. Boreczky and L. Wilcox. A hidden markov model framework for
    video segmentation using audio an image features. In Proc. IEEE
    ICASSP, 1998.
    [16] C.J.C. Burges. A tutorial on support vector machines for pattern
    recognition. Data Mining and Knowledge Discovery, 2:121–167, 1998.
    [17] C.C. Chang. Smooth support vector machine for multi-class classification.
    Master’s thesis, National Taiwan University of science and
    Technology, 2007.
    [18] C. Cortes and V. Vapnik. Support vector networks. Machine Learn-
    ing, 20:273–297, 1995.
    [19] D.E. Denning. A intrusion detection model. IEEE Transactions on
    Software Engineer, SE-13(2):222–232, 1987.
    [20] D. Durbin, S. Eddy, A. Krogh, and G.Mitchison. Biological sequence
    analysis. The press syndicate of the university of Cambridge, 1998.
    [21] P. Frasconi, G. Soda, and A. Vullo. Text categorization for multipage
    documents: A hybrid naive bayes hmm approach. Proceeding
    of the 1st ACM/IEEE-CS joint conference on Digital libraries, pages
    11–20, 2001.
    [22] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood, and
    D. Wolber. A network security monitor. Proc. Symp.on Research in
    Security and Privacy, IEEE Computer Society Press, pages 296–304,
    1990.
    [23] Y.S. Hsu. A hybrid ids framework via decision trees and svms. Master’s
    thesis, National Taiwan University of science and Technology,
    2007.
    [24] T.S. Hwang. A three-tier ids via data mining approach. Master’s
    thesis, National Taiwan University of science and Technology, 2007.
    [25] K. Karplus, C. Barrett, and R. Hughey. Hidden markov models for
    detecting remote protein homologies. Bioinformatics, 14:846–856,
    1998.
    [26] K. Kendall. A database of computer attacks for the evaluation of
    intrusion detection systems. Master’s thesis, Massachusetts Institute
    of Technology, Dept. of Electrical Engineering and Computer Science,
    1999.
    [27] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung,
    D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Zissman.
    Evaluating intrusion detection systems: The 1998 DARPA offline
    intrusion detection evaluation. In Proceedings of the DARPA
    Information Survivability Conference and Exposition, Los Alamitos,
    CA, 2000. IEEE Computer Society Press.
    [28] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das. Analysis
    and results of the 1999 darpa off-line intrusion detection evaluation.
    In RAID ’00: Proceedings of the Third International Workshop on
    Recent Advances in Intrusion Detection, pages 162–182, London, UK,
    2000. Springer-Verlag.
    [29] R. Mag, K. Wong, and F. Fallside. Script recognition using hidden
    markov models. Acoustics, Speech, and Signal Processing, IEEE In-
    ternational Conference on ICASSP ’86, 11:2071–2074, 2003.
    [30] T. Mitchell. Machine Learning. McGraw-Hill Companies,Inc, 1997.
    [31] E.M. Nel, J.A. du Preez, and B.M. Herbst. Estimating the pen trajectories
    of static signatures using hidden markov models. IEEE Trans-
    actions on Pattern Analysis and Machine Intelligence, 27:1733–1746,
    2005.
    [32] L.R. Rabiner. A tutorial on hidden markov models and selected applications
    in speech recognition. Proceedings of the IEEE, 77(2):257–286,
    1989.
    [33] M. Sabhnani and G. Serpen. An application of machine learning
    algorithms to KDD intrusion detection dataset within misuse detection
    context. In Proceedings of the International Conference on
    Machine Learning, Models, Technologies and Applications (MLMTA
    2003), pages 209–215, 2003.
    [34] C.Y. Suen, C.C. Tappert, and T. Wakahara. The state of the art
    in on-line handwriting recognition. IEEE Transactions on Pattern
    Analysis and Machine Intelligence, 8:787–808, 1990.

    無法下載圖示 全文公開日期 2013/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE