簡易檢索 / 詳目顯示

研究生: Mareg Marye Zegeye
Mareg Marye Zegeye
論文名稱: 轉乘式共乘問題
The Share-a-Ride Problem with Transfers
指導教授: 喻奉天
Vincent F. Yu
口試委員: 盧宗成
Chung-Cheng Lu
蔡豐明
Feng-Ming Tsai
林詩偉
Shih-Wei Lin
郭伯勳
Po-Hsun Kuo
周碩彥
Shuo-Yan Chou
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 63
中文關鍵詞: Share-a-ride problemtransferssimulated annealingmutation strategy
外文關鍵詞: Share-a-ride problem, transfers, simulated annealing, mutation strategy
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • People and goods are transported independently in city logistics. New approaches to city logistics are needed to ensure efficient urban mobility for both people and goods. To solve this issue, the share-a-ride problem was developed, in which the same taxi network managed both people and goods in a coordinated way. This system can reduce pollution and urban congestion from a city perspective. The parcel delivery service offers new advantages from the perspective of a taxi company. This research introduces the share-a-ride problem with transfers (SARP-T), which is an extension of the share-a-ride problem (SARP) that allows passengers and parcels to transfer from one taxi to another at the transfer nodes. The goal of the share-a-ride problem with transfers (SARP-T) is to maximize the profit from serving parcel and passenger requests with taxis that depart from a depot. We developed a mixed integer linear program for SARP-T and proposed the simulated annealing with mutation strategy (SAMS) algorithm to solve the problem. Computational findings indicate that for small SARP-T benchmark instances, both the commercial solver CPLEX and our proposed SAMS algorithm attain optimal solutions. Furthermore, for large SARP-T benchmark instances, comparison results demonstrate that the proposed SAMS algorithm achieves better solution values than the basic SA heuristic. Our analysis also shows that SARP-T solutions are better than the share-a-ride problem (SARP), the general share-a-ride problem (G-SARP), and the share-a-ride problem with flexible compartments (SARPFC) solutions.

    TABLE OF CONTENTS ABSTRACT ii ACKNOWLEDGMENT iii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES viii CHAPTER 1 1 INTRODUCTION 1 1.1. Background 1 1.2. Research objective and contribution 2 1.3. Scope and limitations 3 1.4. Research procedures 3 1.5. Organization of thesis 4 CHAPTER 2 6 LITERATURE REVIEW 6 2.1. The Dial-a-Ride Problem 6 2.2. The Share-a-Ride Problem 8 2.3. Transfers of requests 10 2.4. Benefits of transfers 12 CHAPTER 3 15 MODEL DEVELOPMENT 15 3.1. Problem Definition 15 3.2. Model development 16 CHAPTER 4 21 SOLUTION METHODOLOGY 21 4.1. Simulated Annealing Heuristic 21 4.2. Solution representation 22 4.3. The initial solution 25 4.4. Neighborhood moves 27 4.4.1. Swap move 27 4.4.2. Insertion move 27 4.4.3. Reverse move 28 4.4.4. Mutation move 28 4.5. Time slack strategy and penalty mechanism 28 4.5.1. Penalty mechanism 28 4.5.2. Time slack strategy 29 4.6. The general outline of SAMS 30 CHAPTER 5 33 COMPUTATIONAL RESULTS 33 5.1. Description of the benchmark instances 33 5.1.1. Generating small instances 33 5.1.2. Generating large instances 33 5.2. Parameter setting 34 5.3. Performance of SAMS algorithm for solving SARP-T benchmark instances 37 5.3.1. Comparison of CPLEX, basic SA and the proposed SAMS algorithm on small instances …………………………………………………………………………………..38 5.3.2. Comparison of the basic SA and the proposed SAMS for large SARP-T instances…………. 38 5.3.3. Comparison of SARP-T model with SARP, G-SARP and SARPFC models 40 CHAPTER 6 46 CONCLUSION AND FUTURE RESEARCH 46 6.1. Conclusion 46 6.2. Future Research 46 REFERENCES 48

    Bongiovanni, C., Kaspi, M., & Geroliminis, N. (2019). The electric autonomous dial-a-ride problem. Transportation Research Part B: Methodological, 122, 436-456. https://doi.org/10.1016/j.trb.2019.03.004
    Braekers, K., Caris, A., & Janssens, G. K. (2014). Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots. Transportation Research Part B: Methodological, 67, 166-186. https://doi.org/10.1016/j.trb.2014.05.007
    Cavagnini, R., & Morandi, V. (2021). Implementing Horizontal Cooperation in Public Transport and Parcel Deliveries: The Cooperative Share-A-Ride Problem. Sustainability, 13(8). https://doi.org/10.3390/su13084362
    Cordeau, J.-F., & Laporte, G. (2003a). The Dial-a-Ride Problem (DARP): Variants, modeling issues and algorithms. Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(2). https://doi.org/10.1007/s10288-002-0009-8
    Cordeau, J.-F., & Laporte, G. (2003b). A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological, 37(6), 579-594. https://doi.org/10.1016/s0191-2615(02)00045-0
    Cordeau, J.-F., & Laporte, G. (2007). The dial-a-ride problem: models and algorithms. Annals of Operations Research, 153(1), 29-46. https://doi.org/10.1007/s10479-007-0170-8
    Detti, P., Papalini, F., & Lara, G. Z. M. d. (2017). A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. Omega, 70, 1-14. https://doi.org/10.1016/j.omega.2016.08.008
    Fu, Z., & Chow, J. Y. J. (2022). The pickup and delivery problem with synchronized en-route transfers for microtransit planning. Transportation Research Part E: Logistics and Transportation Review, 157. https://doi.org/10.1016/j.tre.2021.102562
    Ho, S. C., Szeto, W. Y., Kuo, Y.-H., Leung, J. M. Y., Petering, M., & Tou, T. W. H. (2018). A survey of dial-a-ride problems: Literature review and recent developments. Transportation Research Part B: Methodological, 111, 395-421. https://doi.org/10.1016/j.trb.2018.02.001
    Hosni, H., Naoum-Sawaya, J., & Artail, H. (2014). The shared-taxi problem: Formulation and solution methods. Transportation Research Part B: Methodological, 70, 303-318. https://doi.org/10.1016/j.trb.2014.09.011
    Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671
    Li, B., Krushinsky, D., Reijers, H. A., & Van Woensel, T. (2014). The Share-a-Ride Problem: People and parcels sharing taxis. European Journal of Operational Research, 238(1), 31-40. https://doi.org/10.1016/j.ejor.2014.03.003
    Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016a). An adaptive large neighborhood search heuristic for the share-a-ride problem. Computers & Operations Research, 66, 170-180. https://doi.org/10.1016/j.cor.2015.08.008
    Li, B., Krushinsky, D., Van Woensel, T., & Reijers, H. A. (2016b). The share-a-ride problem with stochastic travel times and stochastic delivery locations. Transportation Research Part C: Emerging Technologies, 67, 95-108. https://doi.org/http://dx.doi.org/10.1016/j.trc.2016.01.014
    Maalouf, M., MacKenzie, C. A., Radakrishnan, S., & Court, M. (2014). A new fuzzy logic approach to capacitated dynamic Dial-a-Ride problem. Fuzzy Sets and Systems, 255, 30-40. https://doi.org/10.1016/j.fss.2014.03.010
    Masmoudi, M. A., Hosny, M., Braekers, K., & Dammak, A. (2016). Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem. Transportation Research Part E: Logistics and Transportation Review, 96, 60-80. https://doi.org/10.1016/j.tre.2016.10.002
    Masson, R., Lehuédé, F., & Péton, O. (2014). The Dial-A-Ride Problem with Transfers. Computers & Operations Research, 41, 12-23. https://doi.org/10.1016/j.cor.2013.07.020
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087-1092. https://doi.org/10.1063/1.1699114
    Paquette, J., Cordeau, J.-F., Laporte, G., & Pascoal, M. M. B. (2013). Combining multicriteria analysis and tabu search for dial-a-ride problems. Transportation Research Part B: Methodological, 52, 1-16. https://doi.org/10.1016/j.trb.2013.02.007
    Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2010). Variable neighborhood search for the dial-a-ride problem. Computers & Operations Research, 37(6), 1129-1138. https://doi.org/10.1016/j.cor.2009.10.003
    Peng, Z., Al Chami, Z., Manier, H., & Manier, M.-A. (2019). A hybrid particle swarm optimization for the selective pickup and delivery problem with transfers. Engineering Applications of Artificial Intelligence, 85, 99-111. https://doi.org/10.1016/j.engappai.2019.06.006
    Rais, A., Alvelos, F., & Carvalho, M. S. (2014). New mixed integer-programming model for the pickup-and-delivery problem with transshipment. European Journal of Operational Research, 235(3), 530-539. https://doi.org/10.1016/j.ejor.2013.10.038
    Santos, D. O., & Xavier, E. C. (2015). Taxi and Ride Sharing: A Dynamic Dial-a-Ride Problem with Money as an Incentive. Expert Systems with Applications, 42(19), 6728-6737. https://doi.org/10.1016/j.eswa.2015.04.060
    Vallee, S., Oulamara, A., & Cherif-Khettaf, W. R. (2020). New online reinsertion approaches for a dynamic Dial-a-Ride Problem. Journal of Computational Science, 47. https://doi.org/10.1016/j.jocs.2020.101199
    Wolfinger, D., & Salazar-González, J.-J. (2021). The Pickup and Delivery Problem with Split Loads and Transshipments: A Branch-and-Cut Solution Approach. European Journal of Operational Research, 289(2), 470-484. https://doi.org/10.1016/j.ejor.2020.07.032
    Yu, V. F., Indrakarna, P. A. Y., Redi, A. A. N. P., & Lin, S.-W. (2021). Simulated Annealing with Mutation Strategy for the Share-a-Ride Problem with Flexible Compartments. Mathematics, 9(18). https://doi.org/10.3390/math9182320
    Yu, V. F., Jewpanya, P., & Redi, A. A. N. P. (2016). Open vehicle routing problem with cross-docking. Computers & Industrial Engineering, 94, 6-17. https://doi.org/10.1016/j.cie.2016.01.018
    Yu, V. F., Jodiawan, P., Ho, Y.-H., & Lin, S.-W. (2019). Location-Routing Problem With Demand Range. IEEE Access, 7, 149142-149155. https://doi.org/10.1109/access.2019.2946219
    Yu, V. F., & Lin, S.-W. (2014). Multi-start simulated annealing heuristic for the location routing problem with simultaneous pickup and delivery. Applied Soft Computing, 24, 284-290. https://doi.org/10.1016/j.asoc.2014.06.024
    Yu, V. F., & Lin, S.-Y. (2015a). A simulated annealing heuristic for the open location-routing problem. Computers & Operations Research, 62, 184-196. https://doi.org/10.1016/j.cor.2014.10.009
    Yu, V. F., & Lin, S.-Y. (2015b). Solving the location-routing problem with simultaneous pickup and delivery by simulated annealing. International Journal of Production Research, 54(2), 526-549. https://doi.org/10.1080/00207543.2015.1085655
    Yu, V. F., Marye Zegeye, M., Geremew Gebeyehu, S., Indrakarna, P. A. Y., & Jodiawan, P. (2023a). A matheuristic algorithm for the share-a-ride problem. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2023.120569
    Yu, V. F., Marye Zegeye, M., Geremew Gebeyehu, S., Indrakarna, P. A. Y., & Jodiawan, P. (2023b). The multi-depot general share-a-ride problem. Expert Systems with Applications, 213. https://doi.org/10.1016/j.eswa.2022.119044
    Yu, V. F., Purwanti, S. S., Redi, A. A. N. P., Lu, C.-C., Suprayogi, S., & Jewpanya, P. (2018). Simulated annealing heuristic for the general share-a-ride problem. Engineering Optimization, 50(7), 1178-1197. https://doi.org/10.1080/0305215x.2018.1437153
    Yu, V. F., Redi, A. A. N. P., Hidayat, Y. A., & Wibowo, O. J. (2017). A simulated annealing heuristic for the hybrid vehicle routing problem. Applied Soft Computing, 53, 119-132. https://doi.org/10.1016/j.asoc.2016.12.027
    Zidi, I., Mesghouni, K., Zidi, K., & Ghedira, K. (2012). A multi-objective simulated annealing for the multi-criteria dial a ride problem. Engineering Applications of Artificial Intelligence, 25(6), 1121-1131. https://doi.org/10.3182/20100831-4-fr-2021.00047

    無法下載圖示 全文公開日期 2026/07/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE