簡易檢索 / 詳目顯示

研究生: 曾敬翔
Jing-Xiang Zeng
論文名稱: 開發一適用於表面增強拉曼光譜檢測濫用藥物之紙基微流體晶片
Developing a SERS integrated paper-based chip for detecting drug abuse
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 陳珮珊
Pai-Shan Chen
劉沂欣
Yi-Hsin Liu
葉怡均
Yi-Chun Yeh
林鼎晸
Ding-Zheng Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 135
中文關鍵詞: 紙基晶片微流體表面增強拉曼光譜
外文關鍵詞: paper-based device, SERS, drug detecting
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究開發出一適用於拉曼光學檢測的紙基微流體晶片,利用簡易微影製程製作的紙基微流體平台並塗佈一種新穎的具有表面拉曼增強光譜(SERS)特性的負載銀奈米粒子的中孔洞沸石材料(Ag@MZN),使在拉曼訊號微弱的紙基平台上得以檢測檢體的拉曼光譜,並可成功應用於檢測常見的濫用藥物,本晶片開發成功後,將有助於提供一種易於使用且可靠的濫用藥物檢測系統。
本晶片利用易於取得且成本低廉的纖維素濾紙,配合使用簡易的微影製程設備、材料、方法及場地,製作出具有親水及疏水區域的紙基平台,再使用Ag@MZN材料於平台中之親水區域,可以低成本在任何實驗室製成。


In this study, a paper-based device was fabricated by low cost lithography process with Ag@MZN, a newly chemical compound used to detect the abuse or misuse of drugs with Surface-Enhanced Raman Spectroscopy(SERS). Three experiments were conducted, including: (1) studying different parameters to optimize the lithography fabrication process; (2) studying the coverage efficiency of Ag@MZN on the surface of paper-based channels with different coating methods; (3) quantifying the SERS signal of Ketoprofen on the paper-based devices which were fabricated by different parameters or fabrication processes.
The experiment results showed that the paper-based devices could be successfully fabricated by low cost and coated with Ag@MZN, and the SERS signal of Ketoprofen could be detected.

摘要 i Abstract ii 目錄 iii 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1.1 研究背景 1 1.1.1 微流體生醫晶片 2 1.1.2 紙基微流體晶片 4 1.1.3 表面增強拉曼光譜 6 1.2 研究動機與目的 7 1.3 研究方法 10 1.4 論文架構 12 第二章 文獻回顧 15 2.1 紙基微流體平台製作相關文獻 15 2.1.1 蠟列印式 16 2.1.2 繪圖式 17 2.1.3 噴墨蝕刻式 19 2.1.4 雷射式 19 2.1.5 沖壓式 20 2.1.6 剪切式 21 2.1.7 噴漆式 22 2.1.8 微影式 23 2.1.9 電漿處理式 24 2.1.10 化學氣相沉積式 25 2.1.11 濕蝕刻式 25 2.2 表面增強拉曼光譜運用於紙基微流體平台 28 2.2.1 噴墨印刷式塗佈金屬奈米粒子 28 2.2.2 浸泡式塗佈金屬奈米粒子 29 2.2.3 噴塗式塗佈金屬奈米粒子 30 2.3 中孔洞沸石負載銀奈米粒子 32 第三章 微流體晶片製備 34 3.1 微影製程簡介 34 3.2 微銑削簡介 38 3.2.1 微銑削機加工介紹 41 3.2.2 操作方式與使用說明 42 3.3 紙基微流體晶片製作 44 3.2.1 紙基微流體平台製作 46 3.2.2 塗佈負載銀奈米粒子之中孔洞沸石 50 3.2.3 光阻選擇 51 3.2.4 光罩製作 53 3.2.5 顯影過程改良 56 3.2.6 塗佈模具製作 56 3.2.7 塗佈過程改良 58 第四章 研究設備介紹 59 4.1 製程設備與軟體 59 4.2 量測設備與軟體 61 第五章 實驗方法 63 5.1 紙基微流體平台效果測試 63 5.1.1 實驗設計概念 64 5.1.2 實驗操作方式 65 5.2 塗佈效果分析 66 5.2.1 實驗設計概念 66 5.2.2 實驗操作方式 70 5.3 影響SERS之因素分析 72 5.3.1 實驗設計概念 72 5.3.2 實驗操作方式 73 第六章 實驗結果與討論 75 6.1 紙基微流體平台效果測試 75 6.1.1 孔徑25 μm之濾紙製成之紙基微流道 75 6.1.2 孔徑5 μm之濾紙製成之紙基微流道 77 6.1.3 孔徑0.45 μm之濾紙製成之紙基微流道 78 6.2 塗佈效果分析 80 6.2.1 塗佈方式與濾紙孔徑選擇 80 6.2.2 塗佈次數差異 84 6.2.3 紙基微流體晶片塗佈 86 6.3 影響SERS之因素分析 88 6.3.1 不同孔徑濾紙 88 6.3.2 不同塗佈次數 90 6.3.3 紙基微流體晶片 91 6.3.4 最低濃度測試 94 第七章 結論與未來展望 96 7.1 結論 96 7.2 未來展望 98 參考文獻 100

[1] 國家教育研究院 檢自http://terms.naer.edu.tw/detail/1315394/
[2] 行政院重要政策-台灣生技醫療產業推動現況,2019
[3] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer", IEEE Transactions on Electron Devices, v26, n12, p1880-1886, 1979.
[4] 李國賓 著,下一波生物晶片–微流體生醫晶,2005,檢自https://ejournal.stpi.narl.org.tw/sd/download?source=9401/9401-11.pdf&vlId=41348F35-1B8B-40A8-A6FD-74CA9B37B1A9&nd=0&ds=0
[5] Lab on Chip.gene-quantification.info.Retrieved from https://www.gene-quantification.de/lab-on-chip.html
[6] Five short stories on the history if microfluidics. Retrieved from https://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-and-tutorials/history-of-microfluidics/
[7] J.-D. Wu, M. Dong, C. Rigatto, Y. Liu, and F. Lin, "Lab-on-chip technology for chronic disease diagnosis", NPJ Digital Medicine, v1, n1, p1-11, 2018.
[8] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, "Patterned paper as a platform for inexpensive, low‐volume, portable bioassays", Angewandte Chemie, v119, n8, p1340-1342, 2007.
[9] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape", Proceedings of the National Academy of Sciences, v105, n50, p19606-19611, 2008.
[10] A. F. Chrimes, K. Khoshmanesh, P. R. Stoddart, A. Mitchell, and K. Kalantar-zadeh, "Microfluidics and Raman microscopy: current applications and future challenges", Chemical Society Reviews, v42, n13, p5880-5906, 2013.
[11] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode", Chemical Physics Letters, v26, n2, 1974.
[12] K. A. Willets, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing", Annu. Rev. Phys. Chem., v58, p267-297, 2007.
[13] M. M. Dvoynenko, H.-H. Wang, H.-H. Hsiao, Y.-L. Wang, and J.-K. Wang, "Study of signal-to-background ratio of surface-enhanced Raman scattering: Dependences on excitation wavelength and hot-spot gap", The Journal of Physical Chemistry C, v121, n47, p26438-26445, 2017.
[14] M. I. Stockman, "Nanoplasmonics: The physics behind the applications", Phys. Today, v64, n2, p39-44, 2011.
[15] X. Zhang, H. Sui, X. Wang, H. Su, W. Cheng, X. Wang, and B. Zhao, "Charge transfer process at the Ag/MPH/TiO 2 interface by SERS: alignment of the Fermi level", Physical Chemistry Chemical Physics, v18, n43, p30053-30060, 2016.
[16] 2019年12月份「藥物濫用案件暨檢驗統計資料」重點摘錄
[17] 法務部反毒大本營:毒品情勢分析-下(2016 年6 月)
[18] K. E. Moeller, K.-C. Lee, and J. C. Kissack, "Urine drug screening: practical guide for clinicians", In Mayo Clinic Proceedings, Elsevier, v83, n1, p66-76, 2008.
[19] 台灣尖端先進生技醫藥 濫用藥物檢驗中心,檢自http://www.enc.org.tw/upload/download20121119112904020.pdf
[20] F. T. Peters, T. Kraemer, and H. H. Maurer, "Drug testing in blood: validated negative-ion chemical ionization gas chromatographic–mass spectrometric assay for determination of amphetamine and methamphetamine enantiomers and its application to toxicology cases", Clinical Chemistry, v48, n9, p1472-1485,2002.
[21] A. Nakamoto, M. Nishida, T. Saito, I. Kishiyama, S. Miyazaki, K. Murakami, M. Nagao, and A. Namura, "Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3, 4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection", Analytica Chimica Acta", v661, n1, p42-46, 2010.
[22] F. Westphal, C. Franzelius, J. Schäfer, H. W. Schütz, and G. Rochholz, "Development of a validated method for the simultaneous determination of amphetamine, methamphetamine and methylenedioxyamphetamines (MDA, MDMA, MDEA) in serum by GC-MS after derivatisation with perfluorooctanoyl chloride", Accreditation and Quality Assurance, v12, n7, p335-342, 2007.
[23] A. G. Chambers, J. S. Mellors, W. H. Henley, and J. M. Ramsey, "Monolithic integration of two-dimensional liquid chromatography− capillary electrophoresis and electrospray ionization on a microfluidic device", Analytical Chemistry, v83, n3, p842-849, 2011.
[24] S. H. Cosbey, K. L. Peters, A. Quinn, and A. Bentley, "Mephedrone (methylmethcathinone) in toxicology casework: a northern ireland perspective", Journal of Analytical Toxicology, v37, n2, p74-82, 2013.
[25] W.-S. Kim, J.-H. Shin, H.-K. Park, and S. Choi, "A low-cost, monometallic, surface-enhanced Raman scattering-functionalized paper platform for spot-on bioassays", Sensors and Actuators B: Chemical, v222, pp1112-1118, 2016.
[26] B. Li, W. Zhang, L. Chen, and B. Lin, "A fast and low‐cost spray method for prototyping and depositing surface‐enhanced Raman scattering arrays on microfluidic paper based device", Electrophoresis, v34, n15, p2162-2168, 2013.
[27] E. A. Abood, and M. Wazaify, "Abuse and misuse of prescription and nonprescription drugs from community pharmacies in Aden City—Yemen", Substance Use & Misuse, v51, n7, p942-947, 2016.
[28] Y. He, Y. Wu, J.-Z. Fu, and W.-B. Wu, "Fabrication of paper-based microfluidic analysis devices: a review", RSC Advances, v5, n95, p78109-78127, 2015.
[29] Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, "Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay", Electrophoresis, v30, n9, p1497-1500, 2009.
[30] E. Carrilho, A. W. Martinez, and G. M. Whitesides, "Understanding wax printing: a simple micropatterning process for paper-based microfluidics", Analytical Chemistry, v81, n16, p7091-7095, 2009.
[31] D. A. Bruzewicz, M. Reches, and G. M. Whitesides, "Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper", Analytical Chemistry, v80, n9, p3387-3392, 2008.
[32] J. Nie, Y. Zhang, L. Lin, C. Zhou, S. Li, L. Zhang, and J. Li, "Low-cost fabrication of paper-based microfluidic devices by one-step plotting", Analytical Chemistry, v84, n15, p6331-6335, 2012.
[33] K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper", Analytical Chemistry, v80, n18, p6928-6934, 2008.
[34] G. Chitnis, Z. Ding, C.-L. Chang, C. A. Savran, and B. Ziaie, "Laser-treated hydrophobic paper: an inexpensive microfluidic platform", Lab on a Chip, v11, n6, p1161-1165, 2011.
[35] P. de Tarso Garcia, T. M. G. Cardoso, C. D. Garcia, E. Carrilho, and W. K. T. Coltro, "A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays", RSC Advances, v4, n71, p37637-37644, 2014.
[36] E. M. Fenton, M. R. Mascarenas, G. P. López, and S. S. Sibbett, "Multiplex lateral-flow test strips fabricated by two-dimensional shaping", ACS Applied Materials & Interfaces, v1, n1, p124-129, 2009.
[37] T. Nurak, N. Praphairaksit, and O. Chailapakul, "Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water", Talanta, v114, p291-296, 2013.
[38] C. Emanuel, S.T. Phillips, S.J. Vella, A.W. Martinez, and G.M. Whiteside, "Paper microzone plates", Analytical Chemistry, v81, n15, p5990-5998, 2009.
[39] X. Li, J. Tian, T. Nguyen, and W. Shen, "Paper-based microfluidic devices by plasma treatment", Analytical Chemistry, v80, n23, p9131-9134, 2008.
[40] G. Demirel, and E. Babur, "Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications", Analyst, v139, n10, p326-2331, 2014
[41] L. Caia, C. Xu, S. Lin, J. Luo, M. Wu, and F. Yang, "A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask", Biomicrofluidics, v8, n5 p056504, 2014.
[42] W. W. Yu, and I. M. White, "Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper", Analytical Chemistry, v82, n23, p9626-9630, 2010.
[43] P. Reokrungruang, I. Chatnuntawech, T. Dharakul, and S. Bamrungsap, "A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening", Sensors and Actuators B: Chemical, v285, p462-469, 2019.
[44] 以中孔洞沸石負仔高密度銀奈米粒子之合成、鑑定及應用,國立臺灣師範大學/化學系/107/碩士/自然科學學門/化學學類,研究生:陳思婷,指導教授:劉沂欣
[45] 蕭宏 著,半導體製程技術導論,全華圖書,2014
[46] 李有璋 主編,半導體與光電製程及設備,高立圖書,2018
[47] 葉文冠、翁俊仁 著,半導體製程技術與元件,東華書局,2008
[48] C. K. Malek and V. Saile, "Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review", Microelectronics Journal, v35, p131-143, 2004.
[49] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer", IEEE Transactions on Electron Devices, v26, n12, p1880-1886, 1979.
[50] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip", Analytical Chemistry, v64, p1926-1932, 1992.
[51] C. H. Ahn, J.-W Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, et al., "Disposable smart lab on a chip for point-of-care clinical diagnostics", Proceedings of the IEEE, v92, n1, p154-173, 2004.
[52] P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, "The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices", Electrophoresis, v26, n9, p1792-1799, 2005.
[53] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehanb, and M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics", Sensors and Actuators B: Chemical, v114, n1, p239-247, 2006.
[54] E. T. Enikov, and J. G. Boyd, "Electroplated electro-fluidic interconnects for chemical sensors", Sensors and Actuators, v84, n1-2, p161-164, 2000.
[55] H. Takaoa, K. Miyamurab, H. Ebib, M. Ashikia, K. Sawadaa, and M. Ishidaa, "A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test", Sensors and Actuators A: Physical, v119, n2, p468-475, 2005.
[56] J. Melin, N. Roxhed, G. Gimenez, P. Griss, W. van der Wijngaart, and G. Stemme, "A liquid-triggered liquid microvalve for on-chip flow control", Sensors and Actuators B: Chemical, v100, n3, p463-468, 2004.
[57] A. Berthold, P. M. Sarro, and M.J. Vellekoop, "Two-step glass wet-etching for micro-fluidic devices", Proceedings of the SeSens workshop, v120, p7-26, 2000.
[58] D. Mijatovic, J. C. T. Eijkel, and A. van den Berg, "Technologies for nanofluidic systems: top-down vs. bottom-up—a review", Lab on a chip, v5, n5 p492-500, 2005.
[59] J.-Y. Cheng, M.-H. Yen, C.-W. Wei, Y.-C. Chuang, and T.-H. Young, "Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip", Journal of Micromechanics and Microengineering, v15, n6, pp1147-1156, 2005.
[60] C. G. K. Malek, "Laser processing for bio-microfluidics applications (part II)", Analytical and Bioanalytical Chemistry, v385, p1362-1369, 2006.
[61] D. J. Guckenberger, T. E. de Groot, A. M. D. Wan, D. J. Beebe, and E. W. K. Young, "Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices", Lab Chip, v15, n11, p2364–2378, 2015.
[62] M. L. Huperta, W. J. Guya, S. D. Llopisa, C. Situmaa, S. Rania, D. E. Nikitopoulosa, and S. A. Soper, "High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters", Microfluidics, BioMEMS, and Medical Microsystems IV, v6112, p61120B, International Society for Optics and Photonics, 2006.
[63] M. Schilling, W. Nigge, A. Rudzinski, A. Neyerb, and R. Hergenrödera, "A new on-chip ESI nozzle for coupling of MS with microfluidic devices", Lab Chip, v4, n3, p220-224, 2004.
[64] G. S. Fiorini, and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application, " BioTechniques, v38, no3, p429-446, 2005.
[65] S. K. Sia, and G. M. Whitesides, "Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies", Electrophoresis, v24, n21, p3563-3576, 2003.
[66] L. Peng, Y. Deng, P. Yi1, and X. Lai, "Micro hot embossing of thermoplastic polymers: A review", Journal of Micromechanics and Microengineering, v24, n1, p013001, 2013.
[67] Y.-C. Su, J. Shah, and L. Lin, "Implementation and analysis of polymeric microstructure replication by micro injection molding", Journal of Micromechanics and Microengineering, v14, n3, p415, 2004.
[68] P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate", The International Journal of Advanced Manufacturing Technology, v71, n9-12, p1623-1630, 2014.
[69] S. Hong, and W. Kim, "Dynamics of water imbibition through paper channels with wax boundaries", Microfluidics and Nanofluidics, v19, n4, p845-853, 2015.

無法下載圖示 全文公開日期 2025/08/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE