簡易檢索 / 詳目顯示

研究生: 張廖軒曲
Hsuan-Chu Chang Liao
論文名稱: 模組化拉脹材料應用於雙曲面建築外觀
Modularised Auxetic Structure for Curved Building Skins
指導教授: 施宣光
Shen-Guan Shin
口試委員: 彭雲宏
Yeng-Horng Perng
蔡欣君
Shin-Jyun Tsaih
許志霖
Chih-Lin Hsu
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 82
中文關鍵詞: 拉脹結構負蒲鬆比模組化建築外覆系統雙曲面Grasshopper for Rhinoceros
外文關鍵詞: auxetics, negative Poisson's ratio, modularisation, curved building skins, hyperboloid surface, Grasshopper for Rhinoceros
相關次數: 點閱:164下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討拉脹結構在建築外覆系統模組化的應用。拉脹結構是一種具有負蒲鬆比的結構行為,在外界拉力下會向多個方向擴張,這種獨有的特性使其成為實驗與商業上重要的構造形式,這種特性可以提高結構的性能並使其更具彈性,相較於其他種類的結構方式來的更加自由。本研究將近一步的研究在模組化使用拉脹結構的好處,以及這種創新材料如何提高建築在施工時的效率、速度和未來可持續性。
    研究初期針對拉脹模式在模組化的特性與行為做分析,確立在雙向曲面的狀況下帶來更高效和更具創造性的外殼系統,並針對各種拉張形式的型態做模擬。進一步的將研究運用在臺灣科技大學IB大樓前的Grid Shell作為實驗對象,在這個雙曲面造型上測試拉張形式的結構行為運用Grasshopper for Rhinoceros裡的插件來模擬拉張形式在正負高斯曲率下的動作,探討在建築結構系統中實施拉脹結構在建築外覆系統上的潛力並強調接下來需要克服的挑戰與可進行研究之方向,期望能為未來的研究提出更深層的建議。


    This article explores the application of auxetics in modularising curved building skins. Auxetics are a kind of behaviour with a negative Poisson's ratio, meaning they will expand in multiple directions under external tension. This unique characteristic makes them significant in experimental and commercial contexts. This feature enhances structural performance and flexibility, offering greater freedom than other structural methods.
    The characteristics and behaviour of auxetics in modularisation are analysed at the beginning of the study. It is established that hyperboloid surfaces can lead to a more efficient and creative building envelope system. Simulations are conducted to explore various types of auxetics. Subsequently, the research of auxetics applies to the Grid Shell in front of the IB Building at the NTUST, serving as the experimental subject. The plug-in Grasshopper for Rhinoceros is utilised to simulate the actions of the tension form under both positive and negative Gaussian curvature. This investigation delves into the potential implementation of auxetic structures in building envelope systems, highlighting challenges that need to be addressed and suggesting future research.

    論文摘要 ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENT LIST OF FIGURES CHAPTER 1 INTRODUCTION 1.1 General 1.2 Motivation & Research Objectives 1.3 Research Methodology CHAPTER 2 LITERATURE REVIEW 2.1 Building Envelope Systems 2.1.1 Curvature Building Envelopes 2.2 Auxetic Structures & Case Studies 2.2.1 Negative Poisson's Ratio 2.2.2 Bistable Auxetic 2.2.3 Applications and Physical Prototypes 2.3 Conclusion of Literature Reviews CHAPTER 3 COMPUTATIONAL DESIGN OF AUXETIC STRUCTURES 3.1 Types of auxetic structures 3.1.1 4- Triangular Auxetic Patterns 3.1.2 6- Triangular Auxetic Patterns 3.1.3 4- Quadrilateral Auxetic Patterns 3.1.4 Tilling Auxetic Patterns 3.2 Conclusion of Auxetic Types CHAPTER 4 FABRICATION & INSTALLATION OF AUXETIC STRUCTURES 4.1 Materialised Experiment 4.1.1 Manual Operation 4.1.2 Material Comparison 4.1.3 Computational Design 4.2 Development & Fabrication 4.2.1 Auxetic materials modularisation 4.2.2 Grid Shell Double-curved Surfaces 4.3 Assembly of Auxetic Structures 4.3.1 Problem & Result CHAPTER 5 CONCLUSION & FUTURE DEVELOPMENT 5.1 Potential Future Applications 5.2 Limitations and Challenges to Implementation REFERENCE APPENDIX A

    Adrover, Esther Rivas. 2015. Deployable Structures. Form + Technique. London: Laurence King Publishing.
    Ashby, M. F., and Y. J. M. Bréchet. 2003. “Designing Hybrid Materials.” Acta Materialia, The Golden Jubilee Issue. Selected topics in Materials Science and Engineering: Past, Present and Future, 51 (19): 5801–5821. doi:10.1016/S1359-6454(03)00441-5.
    “Auxetics – Materiability.” 2023. Accessed July 10. https://materiability.com/portfolio/auxetics/.
    Chen, Tian, Julian Panetta, Max Schnaubelt, and Mark Pauly. 2021. “Bistable Auxetic Surface Structures.” ACM Transactions on Graphics 40 (4): 1–9. doi:10.1145/3450626.3459940.
    Estrin, Y., A.V. Dyskin, and E. Pasternak. 2011. “Topological Interlocking as a Material Design Concept.” Materials Science and Engineering: C 31 (6): 1189–1194. doi:10.1016/j.msec.2010.11.011.
    Evans, Ken E. 1991. “Auxetic Polymers: A New Range of Materials.” Endeavour 15 (4): 170–174. doi:10.1016/0160-9327(91)90123-S.
    Fenci, Giulia E, and Neil GR Currie. 2017. “Deployable Structures Classification: A Review.” International Journal of Space Structures 32 (2): 112–130. doi:10.1177/0266351117711290.
    “Gaussian Curvature.” 2023. Wikipedia. https://en.wikipedia.org/w/index.php?title=Gaussian_curvature&oldid=1135511566.
    Grima, Joseph N., and Kenneth E. Evans. 2006. “Auxetic Behavior from Rotating Triangles.” Journal of Materials Science 41 (10): 3193–3196. doi:10.1007/s10853-006-6339-8.
    Hinds, B. K., J. McCartney, and G. Woods. 1991. “Pattern Development for 3D Surfaces.” Computer-Aided Design 23 (8): 583–592. doi:10.1016/0010-4485(91)90060-A.
    Hong, Woolim, Namita Anil Kumar, Shawanee Patrick, Hui-Jin Um, Heon-Su Kim, Hak-Sung Kim, and Pilwon Hur. 2022. “Empirical Validation of an Auxetic Structured Foot With the Powered Transfemoral Prosthesis.” IEEE Robotics and Automation Letters 7 (4): 11228–11235. doi:10.1109/LRA.2022.3194673.
    “Kangaroo3d.” 2023. Accessed June 8. http://kangaroo3d.com/.
    Kolarevic, Branko. 2001. “Designing and Manufacturing Architecture in the Digital Age.” In , 117–123. Helsinki, Finland. doi:10.52842/conf.ecaade.2001.117.
    Lakes, Roderic. 1987. “Foam Structures with a Negative Poisson’s Ratio.” Science 235 (4792): 1038–1040. doi:10.1126/science.235.4792.1038.
    Lovell, Jenny. 2010. Building Envelopes: An Integrated Approach. 1st ed. Architecture Briefs. New York: Princeton Architectural Press.
    Lukovic, Konakovic. “Computational Design of Auxetic Shells.”
    “Origami - Wikipedia.” 2023. Accessed June 8. https://en.wikipedia.org/wiki/Origami.
    Schling, Eike, and Zongshuai Wan. 2022. “A Geometry-Based Design Approach and Structural Behaviour for an Asymptotic Curtain Wall System.” Journal of Building Engineering 52 (July): 104432. doi:10.1016/j.jobe.2022.104432.
    “Smart Materials.” 2023. EPFL. Accessed March 29. https://www.epfl.ch/labs/gcm/research-projects/smart-materials/.
    Sparavigna, Amelia Carolina. 2014. “Paper-Based Metamaterials: Honeycomb and Auxetic Structures.” International Journal of Sciences, January, 22–25. doi:10.18483/ijSci.597.
    “Tessellation - Wikipedia.” 2023. Accessed June 8. https://en.wikipedia.org/wiki/Tessellation.

    QR CODE