簡易檢索 / 詳目顯示

研究生: 張君旭
Chun-Hsu Chang
論文名稱: 斜張橋主梁抖振反應分析參數之識別與相關數值模擬研究
Study on Identification of Parameters for Cable-Stayed Bridge Deck Buffeting Response Analyses and on Related Numerical Simulations
指導教授: 陳瑞華
Rwey-Hua Cherng
口試委員: 陳建州
Chien-Chou Chen
鄭啟明
Chii-Ming Cheng
張景鐘
Jing-Jong Jang
陳生金
Sheng-Jin Chen
黃震興
Jenn-Shin Hwang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 138
中文關鍵詞: 長跨距橋梁參數識別數值模擬
外文關鍵詞: long-span bridges, parameters identification, numerical simulations
相關次數: 點閱:221下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著橋梁跨徑不斷的增加,工程師必須審慎評估橋梁在風力作用下之安全性及服務性。對於風力作用下所引起的橋梁主梁抖振反應,通常採用全橋風洞試驗或斷面模型風洞試驗配合數值分析進行評估。當以數值分析進行評估時,需要主梁的振態參數包括振態頻率、阻尼比與振形,及氣動力係數與顫振導數。振態參數一般是經由有限元素法模擬獲得,而氣動力係數與顫振導數則是藉由斷面模型風洞試驗來獲得。本文則是以所建立之複合識別方式識別實測反應歷時,以獲得主梁之振態參數,以隨機子空間法識別數值模擬之結果,求取主梁之顫振導數。
由於橋梁所量測得之微振速度歷時具有振態耦合之特性,本文提出一結合經驗模態分解法、隨機遞減法與希爾伯特轉換的分析方式,於時間域上進行橋梁振態參數之識別,可獲得較其他識別方式準確的結果。
在數值模擬部分,首先模擬流體流經方形、矩形與梯形斷面後產生之氣動行為,同時計算相關的氣動力係數;其次模擬矩形斷面之氣彈行為,其中氣彈行為之模擬採用任意拉格朗日-歐拉法,以斷面反應歷時求取顫振導數。由模擬的結果可觀察到與過去風洞試驗中相同之渦流及再接觸現象,所得之氣動力係數接近過去風洞試驗結果之平均值,而所得之顫振導數略為高估;在可接受之計算時間內,數值模擬結果可達到設定之準確度。根據對不同斷面流場數值模擬分析所累積之經驗,對一長跨距斜張橋斷面進行氣動與氣彈現象模擬;結果顯示氣動力係數與顫振導數略高於風洞試驗的結果。
本文利用一近似解析解,配合所得到之主梁振態參數及氣動力係數與顫振導數,求取主梁抖振位移均方根值,以作為橋梁安全性與服務性評估的依據。同時探討振態參數、氣動力係數與顫振導數對抖振反應的影響,結果顯示振態頻率與氣動力係數對抖振反應的影響較大。


As the main spans of bridges become longer, engineers have to assess the wind induced vibration of bridge decks for safety and serviceability. Generally, either the full bridge model wind tunnel test or section model wind tunnel test with analytical procedure is used to evaluate buffeting responses of bridges. Modal parameters, including modal frequencies and damping ratios, are usually obtained by finite element models; aerodynamic parameters, including aerodynamic coefficients and flutter derivatives, are obtained by section model wind tunnel test. In this research, modal and aerodynamic parameters are obtained by identifying filed measurement results and numerical simulations respectively.
This study proposes a method, combing empirical modal decomposition, random decrement technique with Hilbert transform, for identification of modal parameters in time domain from modally coupled response time histories.
Aerodynamic and aeroelastic phenomena of blunt sections are simulated by numerical simulations; the associated aerodynamic coefficients are evaluated; flutter derivatives are identified by stochastic subspace identification method. Vortex shedding and reattachment phenomena are observed in the simulated results. The obtained aerodynamic parameters are compared with those of the wind tunnel test in the literature, and indicated that aerodynamic coefficients approach to the average of wind tunnel test results, flutter derivatives are higher estimated slightly. Finally, numerical simulations are conducted for a bridge section; the interaction effect of fluid-bridge section is accounted by an arbitrary Lagrangian-Eulerian strategy.
Finally, the root mean square values of bridge buffeting responses are evaluated by an approximate analytic formula using the obtained parameters. These results can be used to assess safety and serviceability of the bridge. The effects of modal parameters, aerodynamic coefficient and flutter derivatives on buffeting responses are also investigated.

第一章 緒論 1.1研究動機與目的 1.2本文章節架構 第二章 長跨距橋梁之風致效應 2.1前言 2.2主梁之風致效應 2.2.1顫振效應與分析 2.2.2抖振效應與分析 2.2.3渦流振動效應 2.2.4風馳效應 2.3鋼纜之風致效應 第三章 以隨機子空間識別法識別主梁之顫振導數 3.1前言 3.2顫振導數識別方法簡介 3.3主梁斷面顫振導數識別 3.3.1斷面之運動方程式 3.3.2隨機子空間識別法 3.3.3顫振導數之識別 第四章 流體流經鈍形斷面之數值模擬與相關係數分析 4.1前言 4.2氣動力現象數值模擬控制方程式 4.3氣動力現象數值模擬與氣動力係數分析 4.3.1流場邊界條件設定 4.3.2方形斷面之模擬與分析 4.3.3矩形斷面之模擬與分析 4.3.4梯形斷面之模擬與分析 4.3.5斜張橋主梁斷面之模擬與分析 4.4氣彈現象數值模擬控制方程式 4.4.1數值模擬方法簡介 4.4.2流體控制方程式 4.4.3結構運動方程式 4.4.4流體與結構之界面條件 4.4.5數值模擬計算程序 4.5矩形斷面氣彈現象數值模擬與顫振導數識別 4.5.1矩形斷面垂直向之模擬與分析 4.5.2矩形斷面旋轉向之模擬與分析 4.6斜張橋主梁面氣彈現象數值模擬與顫振導數識別 4.6.1主梁斷面垂直向之模擬與分析 4.6.2主梁斷面旋轉向之模擬與分析 第五章 主梁振態參數之識別 5.1前言 5.2系統識別方法簡介 5.3振態耦合反應之振態參數識別 5.3.1多自由度系統之動態反應 5.3.2本文識別方式之推導 5.4本文識別方式準確性之驗證 5.5斜張橋實測反應之振態參數識別 5.5.1主梁微振歷時之振態參數分析 5.5.2鋼纜微振歷時之振態參數分析 第六章 主梁抖振反應之分析 6.1前言 6.2長跨距橋梁主梁之運動方程式 6.3主梁反應之頻率域分析 6.4主梁位移均方根值之分析 6.5高屏溪斜張橋主梁抖振反應分析 6.6參數敏感度分析 第七章 結論與建議 7.1結論 7.2建議 參考文獻

[1-1] Simiu E. and Scanlan R. H., Wind Effects on Structures, Third Edition ,1996
[2-1]Bleich F., “Dynamic instability of truss-stiffened suspension bridge under wind action,” Proceedings of the ASCE, Vol.74, No.8, pp.1269~1314, 1948
[2-2]Scanlan RH., “The action of flexible bridges under wind : flutter theory,” Journal of Sound and Vibration, Volume 60, Issues 2, pp.189~199, 1978.
[2-3] Namini, A., Albrecht, P. and Bosch, H., “Finite element-based flutter analysis of cable-suspended bridges,” Journal of Structural Engineering, Vol. 118, No. 6, pp 1509-1526, 1992.
[2-4] Miyata, T. and Yamada, H., “ Coupled flutter estimate of a suspension bridge,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 33, No. 1-2, pp 341-348, 1990.
[2-5] Li, Q. C. and Lin, Y. K., “ New stochastic theory for bridge stability in turbulent flow II,” Journal of Engineering Mechanics, Vol. 121, No. 1, pp 102-116, 1995.
[2-6]Jain, A., Jones, N.P., Scanlan, R.H., “Coupled aeroelastic and aerodynamic response analysis of long-span bridges,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.60, pp.69~80, 1996.
[2-7] Bucher, C. G. and Wall, F. J., “Stochastic response of bridges in turbulent wind,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 42, No. 1-3, pp 1347-1358, 1992.
[2-8] Kovacs, I., “Synthetic wind for investigation in time-domain,” Structures Congress XII, pp 900-905, 1994.
[2-9] Boonyapinyo, V., Miyata, T. and Yamada, H., “Advanced aerodynamic analysis of suspension bridges by state-space approach,” Journal of Structural Engineering, Vol. 125, No.n 12, pp 1357-1366, 1999.
[3-1]Scanlan R.H., Sabzevari A., “Experimental aerodynamic coefficients in the study of suspension bridge flutter,” Journal of Mechanical Engineering, Vol.11, No.3, pp.1-11, 1969.
[3-2]Sarker P.P., “Identification of aeroelastic parameter of flexible Bridge,” Journal of Engineering Mechanics, Vol.120, No.8, pp.1718-1742, 1994
[3-3]Zasso A., “Flutter derivatives identification through full bridge aerodynamic model transfer function analysis,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.60, pp.17-33, 1996.
[3-4]Yamada H., Miyata T., Ichikawa H., “Measurement of aerodynamic parameters by system identification methods,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.41-44, pp.1255-1263, 1992
[3-5]Poulsen N.K., Damsgaard A. Reinhold T.A., “Determination of flutter derivatives for the great belt bridge,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.41-44, pp.153-164, 1992
[3-6]Jakobsen J.B., Hansen E., “Determination of the aerodynamic derivatives by a system identification method,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.57, pp.295-305, 1995
[3-7]Larsen A., “Advances in aeroelastic analysis of suspension and cable-stayed bridges,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.74-76, pp.73-90, 1998.
[3-8]Shi J. and Hitchings D., “Calculation of flutter derivatives and speed for 2-D incompressible flow by the finite-element method,” Applied Mathematical Modeling, Vol.18, No.10, pp.538-549, 1994
[3-9]Sarkar, P. P., Jones, N. P. and Scanlan, R. H., “System identification for estimation of flutter derivatives”, Journal of Wind Eng. and Industrial Aerodynamics, Vol.41-44, pp.1243-1254, 1992
[3-10]Ibrahim S.R., “Random decrement technique for modal identification of structures,” Journal of Spacecraft, Vol.14, No.11, pp.696-698, 1977
[3-11]Overschee P.V. and Moor B.D., “Subspace algorithms for the stochastic identification problem,” Proceedings of the 30th Conference on Decision and Control, England, pp.1321-1326, 1991
[3-12]Mishra, S. S., Kumar, K. and Krishna, P., “Identification of 18 flutter derivatives by covariance driven stochastic subspace method,” Wind and Structures, An International Journal, Vol. 9, pp.159-178, 2006.
[3-13]Theodorsen, T., “General theory of aerodynamic instability and mechanism of flutter,” NASA Report, No.496, 1935
[3-14]Scanlan R.H. and Tomko J.J., “Airfoil and bridge deck flutter derivatives,” Journal of Engineering Mechanics Division, vol.6, pp.1717-1737, 1971
[3-15]Katsuchi H., Jones N. P. and Scanlan R. H., “Multi-mode Coupled Flutter and Buffeting Analysis of the Akashi-Kaikyo Bridge,” Journal of Structural Engineering, Vol.125, pp.60-70, 1999
[3-16]Scanlan, R. H., “Interpreting aerodynamic modes of cable-stayed bridges,” Journal of Engineering Mechanics, Vol.113, No.4, pp.555-575, 1987
[3-17]Chen X., Matsumoto M. and Kareem A., “Aerodynamic coupled effects on flutter and buffeting of bridges,” Journal of Engineering Mechanics, Vol.126, No.1, pp.17-26, 2000
[3-18]Simiu E. and Scanlan R. H., Wind Effects on Structures, Third Edition ,1996
[3-19]Sarkar, P. P., New Identification Methods Applied to the Response of Flexible Bridges to Wind, Ph.D Dissertation, The Johns Hopkins University, Baltimore, USA, 1992
[3-20]Van Overschee P., De Moor B., “Subspace Algorithms for the Stochastic Identification Problem,” Automatica, Vol.29, No.3, pp.649~660, 1993
[3-21]Juang, J. N., Applied System Identification, Prentice Hall PTR, Englewood Cliffs, New Jersey, 1994.
[4-1]ANSYS Inc., Theory Reference-Fluid Flow. ANSYS Inc., USA 2001
[4-2]Yu D. and Kareem A., “Numerical simulation of flow around rectangular prism,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.67-68, pp.195-208, 1997
[4-3]Shimada K. and Ishihara T., “Application of a modified k- model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders,” Journal of Fluid Structures, Vol.16, pp.465-485, 2002
[4-4]Li C. W. and Wang L. L., “An immersed boundary finite difference method for LES of flow around bluff shapes,” International Journal for Numerical Methods in Fluids, Vol.46, pp.85-107, 2004.
[4-5]Bearman P. W. and Obasaju E.D., “An experimental study of pressure fluctuations on fixed and oscillation square-section cylinders,” Journal of Fluid Mechanics, Vol.119, pp.297-321, 1982
[4-6]Lee S., “Unsteady aerodynamic force prediction on a square cylinder using turbulence models,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.67-68, pp.79-90, 1997
[4-7]Ohtsuki Y., “Wind tunnel experiments on aerodynamic forces and pressure distributions of rectangular cylinders in a uniform flow,” Proc. 5th Symposium on Wind Effects on Structures, Tokyo, Japan, pp.169-175, 1978
[4-8]Sakamoto S., Murakami S., Kato S., and Mochida A., “Numerical study on flow past 2D square cylinder by large eddy simulation : comparison between 2D and 3D computations,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.50, pp.61-68, 1993.
[4-9]Vickery B.J., “Fluctuating lift and drag on a ling cylinder of square cross-section in a smooth and turbulent stream, Journal of Fluid Mechanics,” Vol.25, pp.481-494, 1966
[4-10]Sakamoto H., Haniu H. and Kobayashi Y., “Fluctuating force acting on rectangular cylinders in uniform flow,” Transaction of the Japan Society of Mechanical Engineers, series B55, No.5, pp.2310-2317, 1989
[4-11]Okajima A., “Numerical simulation of flow around rectangular cylinders,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.33, pp.117-180, 1990
[4-12]Okajima, A., “Strouhal numbers of rectangular cylinders,” Journal of Fluid Mechanics, Vol.123, pp.379-398, 1982
[4-13]Shimada K., and Ishihara T., “Application of a modified model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders,” Journal of Fluids and Structures, Vol.16, No.4, pp.465-485, 2001
[4-14]Larsen A., and Walther J.H., “Discrete vortex simulation of flow around five generic bridge deck sections,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.77-78, pp. 591-602, 1998
[4-15]何明錦,風洞實驗技術於土木建築構造物之應用與驗證計畫─橋樑風洞實驗,內政部建築研究所,2005
[4-16]Hirt, C.W., Amsden, A.A. and Cook, H.K., “An arbitrary Lagrangian–Eulerian computing method for all flow speeds,” Journal of Computer Psychology, Vol.14, pp. 227–253, 1974
[4-17]Donea, J., Giuliani, S. and Halleux, J.P., “An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions,” Computer Methods in Applied Mechanics and Engineering, Vol.33, pp.689–723, 1982
[4-18]Ramaswamy, B. and Kawahara, M., “Arbitrary Lagrangian–Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow,” International Journal for Numerical Methods in Fluids, Vol.7, pp.1053–1075, 1987
[4-19]Nomura, T. and Hughes, T., “An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body,” Computer Methods in Applied Mechanics and Engineering, Vol.95, pp.115–138, 1992
[4-20]Nomura, T., “A numerical study on vortex-excited oscillations of bluff cylinders,” Journal of Wind Engineering and Industrial Aerodynamics, Vol.50, 1993, pp.75–84.
[4-21]Lecointe, Y. and Piquet, Y., “Flow structure in the wake of an oscillating cylinder,” Journal of Fluids Engineering, ASME, Vol.111, pp.139–148, 1989
[4-22]Mittal, S. and Tezduyar, T.E., “A finite element study of incompressible flows past oscillating cylinders and aerofoils,” International Journal for Numerical Methods in Fluids, Vol.15, pp.1073–1118, 1992
[4-23]Zhang, J. and Dalton, C., “ Interaction of a steady approach flow and a circular cylinder undergoing forced oscillation,” Journal of Fluids Eng. ASME, Vol.119, pp.808–813, 1997.
[4-24]Sun D., Wright N. and Owen J., “Wind Effect on Bridges: Coupling fluid and structural analysis,” Proceedings of Sixth Asia-Pacific Conference on Wind Engineering (APCWE-VI), Seoul, Korea, Sep. 12-14, 2005
[4-25]Mendes, P.A. and Branco F.A., “Analysis of fluid-structure interaction by an arbitrary Lagrangian-Eulerian finite element formulation,” International Journal for Numerical Method in Fluids, Vol.30, pp.897-919, 1999
[4-26]B.E. Lee, The effect of turbulence on the surface pressure field of a square prism, Journal of Fluid Mechanics,Vol.69, pp.263-282, 1975
[4-27]Huerta, A. and Liu, W. K., “ Viscous flow structure interaction,” Journal of Pressure Vessel Technology, Vol.110, pp.15-21, 1988
[5-1]Yang, J. N., and Lei, Y., “Identification of Natural Frequencies and Damping Ratios of Linear Structures via Hilbert Transform and Empirical Mode Decomposition,” Proc., IASTED International Conference on Intelligent Systems and Control, IASTED/Acta Press, Anaheim, California, pp.310–315, 1999.
[5-2]Cole, H.A., “Methods and apparatus for measuring the damping characteristics of a structure,” United States Patent Specification, 3-620-069, 1971
[5-3]Cornwell, P. J., Kam, M.K., and Carlson, B., “Comparative study of vibration based damage identification algorithms, ” Proc. of 16th International Modal Analysis Conference, Santa Barbara, USA, pp.1710-1716, 1998.
[5-4]Xu, Y. L., Chen, S. W. and Zhang, R. C., “Modal Identification of Di Wang Building under Typhoon York Using the Hilbert–Huang Transform Method,” Structure Design Tall Spec. Building 12, pp.21–47, 2003.
[5-5]Chang, C.C., Chang, T.Y.P. and Zhang, Q.W., “Ambient vibration of long-span cable-stayed bridge,” Journal of Bridge Engineering, ASCE, Nol.6(1), pp.46-53, 2001.
[5-6]Clough, W. R. and Penzien, J., Dynamic of Structures, McGraw-Hill, New York, 1993
[5-7]Pandit, S.M. and Wu, S. M., Time Series and System Analysis with Applications, John Wiley & Sons, Inc, 1983
[5-8]Ibrahim, S.R. and Mikulcik, E.C., “A Time Domain Modal Vibration Test Technique,” 43th Shock and Vibration Bulletin ,1973
[5-9]Ibrahim, S. R. and Mikulcik, E. C., “The experimental Determination of Vibration Parameters from Time Responses” , Shock and Vibration Bulletin, Vol. 46, Pt. 5, Aug., pp. 183-198, 1976.
[5-10]Li, W., Xiao, D. and Fang, C., “Simultaneous Identification of ARMA Model parameters and Others Using Bi-channel Lattice Filter,” Control Theory Application, Vol.12, No.6, pp.687-693, 1995
[5-11]Smail, M., Thomas, M. and Lakis, A. A., “Assessment of Optimal ARMA Model Orders for Modal Analysis,” Mechanical System and Signal Processing, Vol. 13,No.5, pp.803-819, 1999.
[5-12]Lus, H., Betti, R. and Longman, R.W., “Identification of Linear Structural Systems Using Earthquake-Induced Vibration Data,” Earthquake Engineering and Structural Dynamics, Vol.28, Issue.11, pp.1449-1467, 1999
[5-13]Van Overschee, P. and De Moor, B., “Subspace Algorithms for the Stochastic Identification Problem,” Proceeding of 30th IEEE Conference on Decision and Control, Brighton, UK, pp.1321-1326, 1991
[5-14]Huang, N. E. et al., “The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis,” Proc. R. Soc. London, Ser. A, 454, pp.903–995, 1998
[5-15]Pines, D. and Salvino, L., “Health monitoring of structures using empirical mode decomposition and phase dereverberation,’’ Proceeding 2001 Mechanics and Materials Summer Conference, University of California at San Diego, San Diego, pp.228–229, 2001.
[5-16]Richardson, M. H. and Formenti, D. L. “Parameter Estimation from Frequency Response Measurements using Rational Fraction Polynomials,” Proceedings of the 1st International Modal Analysis Conference, Orlando Florida, November 8-10, 1982
[5-17]Yang, J.C.S., Dagalakis, N.G., Everstine, G.C., and Wang, Y.F., “Measurement of structural damping using the random decrement technique,” Shock and Vibration Bulletin, Vol.53(4), pp.63-71, 1983
[5-18]Hahn, S. L., Hilbert Transforms in signal processing, Artech House, Boston 1996
[5-19]Branch, M.A., Coleman, T.F. and Li, Y. “A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems,” SIAM Journal on Scientific Computing, Vol. 21, No. 1, pp.1-23, 1999.
[5-20]Dennis, J.E. and Schnabel, R.B., “Numerical methods for unconstrained optimization and nonlinear equations,” Prentice-Hall Series in Computational Mathematics, Prentice-Hall, 1983
[5-21]Kiureghian, A.D., “Structural response to stationary excitation,” Journal of the engineering mechanics division, Vol.106, pp.1195-1213, 1980
[5-22]陳建州,陳瑞華,張君旭,「高屏溪斜張橋穩定性之定期監控」,第六屆結構工程研討會論文集,2002。
[5-23]白櫻芳,「配置調質阻尼器長跨距橋梁之抗風分析」,碩士論文,國立台灣科技大學,臺北,1997。
[5-24]Litter, J.D., “Ambient vibration tests on long span suspension bridge,” Journal of Wind Engineering Industrial Aerodynamics, Vol.42, pp.1359-1370, 1992
[5-25]陳瑞華,張君旭,「振態耦合斜張橋之參數識別」,中國土木水利工程學刊,第十九卷,第四期,2007
[6-1]Simu, E. and Scanlan, R. H., “Wind effects on structure,” New York John Wiley, 1996
[6-2] Theodorsen T. , “General theory of aerodynamic instability and the mechanism of flutter,” NACA Report No.496,1935
[6-3]Huston, D. R., Bosch, H. R. and Scanlan, R. H., “The effects of fairings and of turbulence on the flutter derivatives of a Notable Unstable bridge deck,” Seventh International Conference on Wind Engineering, Vol.4, 1987
[6-4]Sarkar, P. P., New identification methods applied to the response of flexible bridge to wind, Thesis submitted in conformity with the requirement for Doctor of Philosophy, The Johns Hopkins University, Baltimore, M.D., USA, 1992
[6-5]Davenport, A. G., Isyumoy, N. and Miytat, T., “ The experimental determination of the response of suspension bridges to turbulent wind,” Wind Effects on Buildings and Structures, pp.1207-1219, 1971
[6-6]Reinhold, T. A., Tieleman, H.W. and Maher, F. J., “Effects of turbulence on bridge model torsional stability,” Journal of Structure Division, Vol.102, No.5, pp.1003-1013, 1976
[6-7]Scanlan, R.H., “On the state of stability consideration for suspended span bridges under wind,” In Proceedings IUTAM-IAHR Symposium, Karlsruhe, Germany, pp. 595-618, 1979
[6-8]Scanlan, R.H. and Jones, N. P., “Aeroelastic analysis of cable stayed bridges,” Journal of Structures Engineering, Vol.116, No.2, pp.279-297, 1990
[6-9]Lin, Y. K., “Motion of suspension bridges in turbulent winds,” Journal of Engineering Mechanics Division, Vol.105, No.EM6, pp.921-932, 1979
[6-10]Kumarasena, T., Wind response prediction of long span bridges, Thesis submitted in conformity with the requirement for Doctor of Philosophy, The Johns Hopkins University, Baltimore, M.D., USA, 1990
[6-11]Jones, N. P., Jain, A. and Scanlan, R. H., “Comparison of wind cross spectral data with models,” Proceeding Prob. Mech. Spec. Conference, ASCE, Denver, Colorado, 1992
[6-12]李肇晃,長跨距橋梁之三維偶合氣彈反應分析,國立台灣科技大學,碩士論文
[6-13]陳瑞華,陳建州,「風對斜張橋主梁與鋼纜穩定性之影響」,交通部台灣區國道新建工程局,2001。

無法下載圖示 全文公開日期 2013/01/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE