簡易檢索 / 詳目顯示

研究生: 陳昱安
Yu-an Chen
論文名稱: 矽基互補金氧半發光與檢光積體電路設計與實現
The Design and Implementation of Si-based CMOS Light-Emitting and Light-Detection Integrated Circuits
指導教授: 劉政光
Cheng-kuang Liu
徐世祥
Shih-hsiang Hsu
口試委員: 周肇基
Jau-ji Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 96
中文關鍵詞: 發光二極體驅動電路轉阻放大器光偵測器矽基互補金氧半積體電路矽發光
外文關鍵詞: LED driver, transimpedance amplifier, phtodetector, Si CMOS IC, Si light-emission
相關次數: 點閱:374下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究方向為矽基發射與接收積體電路的設計,其中包含矽發光與檢光晶片、矽發光元件驅動電路、差動式轉阻放大器、限幅放大器以及單端輸入轉阻放大器。
    首先,採用台積電 0.35μm 2P4M COMS製程與台積電 0.18μm 1P6M CMOS兩種製程來實現三種矽發光元件與檢光晶片,其中一種設計採用0.35μm COMS 製程的PMOS結構。另兩種設計以0.18μm COMS 製程自行設計佈局,所不同處為一種倂用串聯與並聯基本晶片,一種則全用並聯架構。量測結果發現PMOS型佈局在順偏時具有較高的發光效率,併用串聯與並聯者在逆偏時有較高的發光效率,至於檢光特性上,併用串聯與並聯者具有較高響應度為3.107A/W。其次,也設計發光晶片所用的驅動電路,其輸出電流為可調動的,適合較低電流的矽發光元件使用。
    最後,以0.35μm 2P4M COMS與0.18μm 1P6M CMOS製程來設計差動式轉阻放大器與限幅放大器以及單端輸入轉阻放大器。電路中的輸入級為RGC架構,主要目的在隔絕輸入的寄生電容,使頻寬變高,並透過限幅放大器增加輸出電壓的振幅。單端輸入轉阻放大器在供應電壓為3.3V,輸入電容為0.25pF,模擬所得增益值為61.04dBΩ,頻寬為2.003GHz以及總消耗功率為67.89mW。差動轉阻放大器在供應電壓為1.8V,輸入電容為0.25pF,模擬所得增益值為82.47dBΩ,頻寬為3.575GHz以及總消耗功率為26.03mW。


    This thesis demonstrates the design and realization of silicon light-emitting and optical receiving integrated circuits, including the light-detection chip, silicon light-emitting device, driver for silicon light-emitting device, differential transimpedance amplifier with limiting amplifier, and single-ended transimpedance amplifier.
    Firstly, three designs of silicon light-emitting and light-detection devices are realized and compared employing two processes, the TSMC 0.35μm 2P4M COMS process and the TSMC 0.18μm CMOS 1P6M process. One design is made using the PMOS structure in the former process. Two fully self-layout designs use the same TSMC 0.18μm CMOS 1P6M process, but one with series-parallel combination and the other with parallel combination. Measurements show that the design with PMOS structure has the highest emitting efficiency when biased in a forward bias, while the 0.18μm series-parallel combination design has the highest light emitting efficiency when biased in a reverse bias. As for the light-receiving characteristics, the 0.18μm series-parallel combination design has also the highest responsivity of 3.107 A/W. Then, a driver circuit is designed for silicon light-emitting device. Its output current is adjustable and good for low-current devices.
    Finally, the designs of differential transimpedance amplifier followed by a limiting amplifier and single-ended transimpedance amplifier are studied, using the TSMC 0.35μm 2P4M COMS and TSMC 0.18μm CMOS 1P6M processes. RGC type is used as input stage in the circuits. It the effectively isolates the input parasitic capacitance, and therefore increases the bandwidth performance. For the single-ended transimpedance amplifier at 3.3V voltage and 0.25pF input capacitance, our simulated gain is 61.04dBΩ, the bandwidth 2.003GHz, and the total power consumption 67.89mW. As for the differential transimpedance amplifier at a 1.8V voltage and 0.25pF input capacitance, our simulated gain is 82.47dBΩ, the bandwidth 3.575GHz, the bit rate 3.0Gbps, and the total power consumption 26.03mW.

    目錄 論文摘要 I Abstract III 致謝 V 目錄 VII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3論文大綱 3 第二章 相關元件簡介 4 2.1光通訊傳輸系統基本架構簡介 4 2.2光通訊傳輸系統發射電路架構簡介 5 2.2.1光源 5 2.2.2光源驅動電路 6 2.3 光通訊傳輸接收電路元件架構簡介 7 2.3.1光檢測器 7 2.3.2轉阻放大器 9 2.3.3限幅放大器 11 2.3.4時脈資料回復電路 12 2.4突發式訊號簡介 12 2.5數位訊號基本概念 14 2.5.1不歸零資料 14 2.5.2眼圖 15 第三章 矽基檢光與發光晶片的實現與量測 16 3.1光檢測器簡介 16 3.1.1光檢測器架構分類 16 3.1.2 光電轉換基本原理 19 3.1.3光二極體等效電路之基本特性 24 3.1.4光二極體溫度特性與暗電流分析 28 3.2 矽基檢光晶片設計與量測 29 3.2.1檢光晶片設計原理 30 3.2.2 檢光晶片實際量測 38 3.2.3雷射為光源的特性量測 41 3.3 矽基發光晶片設計與量測 46 3.3.1 發光原理 46 3.3.2發光晶片設計架構 48 3.3.3發光晶片實際量測 53 3.4檢光與發光晶片比較 60 3.5結果討論 62 第四章 矽基發光晶片之驅動電路設計 63 4.1矽基發光晶片之驅動電路簡介 63 4.1.1矽基發光晶片之驅動電路架構介紹 64 4.1.2矽基發光晶片之驅動電路模擬結果 65 4.2 結果討論 67 第五章 矽基光接收前端電路設計 69 5.1轉阻放大器簡介 69 5.1.1開迴路轉阻放大器 70 5.1.2回授型轉阻放大器 71 5.1.3 Regulated Cascode電路架構 73 5.2單端式轉阻放大器設計 74 5.2.1單端式轉阻放大器電路架構 75 5.2.2單端式轉阻放大器電路模擬 76 5.3差動式轉阻放大器架構設計 80 5.3.1 改良式Cherry-Hooper放大器 82 5.3.2差動式轉阻放大器電路模擬 83 5.4限幅放大器設計 85 5.4.1 限幅放大器電路架構 85 5.5結果討論 88 第六章 討論與結論 90 6.1結論 90 6.2未來發展與展望 92 參考文獻 93 作者簡介 95

    [1]賴信良,「矽鍺基光電晶體與光接收積體電路設計與實現」,碩士論文,國立台灣科技
    大學,台北,民國98年。
    [2]陳少石,「矽鍺基光接收電路實現與矽基突發式自動增益電路設計」,碩士論文,國立
    台灣科技大學,台北,民國100年。
    [3]舒浩威,「突發式光接收積體電路設計與實現」,碩士論文,國立台灣科技大學,台
    北,民國99年。
    [4]J. Gowar, Optical Communication Systems, Prentice Hall, 1993.
    [5]B. Razavi, Design of Integrated Circuits for Optical Communication, McGraw
    Hill, 2003.
    [6]G. Keiser, Optical Fiber Communications, McGraw Hill, 2000
    [7]Interfacing maxim laser drivers with laser diodes, Application Note of
    MAXIM, 2000.
    [8]S. M. Sze and K. K.Ng, Physics of Semiconductor Device, Wiley Interscience,
    pp. 674-680, 2007.
    [9]劉權德, 光電用轉阻放大器研製, 碩士論文, 國立清華大學, 2001。
    [10]IEEE 802.3ah Ethernet in the First Mile Task Force, Draft 1.414, April
    2003.
    [11]G. Keiser, FTTX Concepts and Applications, John Wiley & Sons, 2006.
    [12]劉深淵、楊清淵,鎖相迴路,滄海書局,民國九十五年十一月。
    [13]DWDM Performance and Conformance Testing Primer, Application Note of
    Tektronix, 2001.
    [14]楊淳良、趙亮琳、李揚漢、許立根、譚昌文、洪鴻文和曹士林,光纖通信網路,五南
    圖書出版股份有限公司,台北,第20-21頁,2007。
    [15]M. Hohenbild, A. Ghazi; P. Seegebrecht: H. Zimmerman, “Advanced
    photodiodes and circuits for OPTO-ASICs,” 2001 International Symposium on
    Electron Devices for Microwave and Optoelectronic Applications, 15-16 Nov,
    2001.
    [16]D. A. Neamen, Semiconductor Physics & Devices, Chap.7, McGraw- Hill, 1997.
    [17]S. O. Kasap, Optoelectronics and Photonics, Principles and Practices,
    Chap. 5, Prentice Hall,2001.
    [18]陳春美,「光照對蕭特基二極體之影響」,碩士論文,國立台灣科技大學, 1993。
    [19]余合興,「光電子學-原理及應用」,中央圖書出版社,1986。
    [20]蔡立民,「接面二極體雜訊特徵的研究」,碩士論文,國立台灣科技大學,1992。
    [21]M. K. Das, and N. R. Das, “Effect of Ge-composition on the frequency
    response of a Si/Si1-yGey P-i-N photodetector,” Optical Engineering, 2006.
    [22]H. Aharoni and M. du Plessis, “Low-operating-voltage integrated silicon
    light-emitting devices,” IEEE J. Quantum Electronics, vol. 40, no. 5, pp.
    557-563, 2004.
    [23]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Wiley
    Interscience, pp.603-604, 2007.
    [24]C. H. Lin, I.C. Yao, C. C. Kuo and S.J. Jou, “2.5Gbps CMOS laser diode
    driver with APC and digitally controlled current modulation,” IEEE Asia-
    Pacific Conference on ASIC, pp. 77-80, 2002.
    [25]C. K. Chua and A. B. Ajjikuttira, “A 2.5Gbps burst mode laser diode driver
    in 0.18-um CMOS technology,” 2007 IEEE International Symposium on
    Integrated Circuits, pp. 184-187, 2007.
    [26]N. Haralabidis and G. Halkias, “A CMOS laser driver with independently
    adjustable dc and modulation currents for data rates up to 2.5Gb/s,” 2000
    IEEE International Symposium on Circuits and Systems, vol. 5, pp. 428-428.
    [27]黃凡修, 「10Gb/s光纖通訊系統傳送/接收電路模擬與實作」,碩士論文,國立中央大學
    , 2003。
    [28]E. M. Cherry and D. E. Hooper, “The design of wideband transistor
    feedback amplifiers,” Proc. IEE, vol. 110, pp. 375–389, Feb. 1963.
    [29] S. -M. Park, H. -J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance
    amplifier for gigabit ethernet applications,” IEEE Journal of Solid-State
    Circuit,vol.39, no.1, January 2004.
    [30]甘瑞銘, 「2.5 Gbps 脈衝式光纖前級接收端電路設計」, 碩士論文,國立中央大學,
    2004。
    [31]蔡宗興,「百億位元矽鍺光纖通信類比前端自動增益控制放大器設計」,碩士論文,
    國立台灣大學,2003。
    [32]M. Li, B. Hayes-Gill, I. Harrison, “6 GHz transimpedance amplifier for
    optical sensing system in low-cost 0.35 μm CMOS,” Electronics Letters ,
    vol.42, no.22, pp.1278-1279, Oct. 26 2006.
    [33]Z. Lu, K. -S. Yeo, W. -M. Lim, M. -A Do, B. -C. Chye, “Design of a CMOS
    broadband transimpedance amplifier with active feedback,” IEEE
    Transactions on Very Large Scale Integration (VLSI) Systems, vol.18, no.3,
    pp.461-472, March 2010.
    [34]陳祐誠,「電流可調十億位元互補式金氧半雷射二極體驅動電路之設計」
    碩士論文,國立高雄應用科技大學, 2010。
    [35]Hossein Miri Lavasani,Wanling Pan, Brandon Harrington, Reza Abdolvand and
    Farrokh Ayazi, “A 76 dBΩ 1.7 GHz 0.18 μm CMOS tunable TIA using
    broadband current pre-amplifier for high frequency lateral MEMS
    oscillators” IEEE Journal of Solid-State Circuit, vol. 46, no. 1, January
    2011.

    無法下載圖示 全文公開日期 2017/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE