簡易檢索 / 詳目顯示

研究生: 高伯爵
Bo - Jyue Kao
論文名稱: PLA/SEBS和PTT/SEBS摻混物之生物相容性、機械性質、熱性質及結晶性質研究
Biocompatibility, Mechanical, Thermal, and Crystallization Properties of Melt-mixed PLA/SEBS and PTT/SEBS Blends
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 邱顯堂
Hsien-Tang Chiu
吳昌謀
Chang-Mou Wu
周雄
Chi-Hsiung Jou
林國賡
Gwo-Geng Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 聚乳酸(PLA)聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)機械性質生物相容性/聚對苯二甲酸丙二酯(PTT)聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯 (SEBS)結晶行為機械性質
外文關鍵詞: Poly(lactic acid) (PLA), Styrene-ethylene-butylene-styrene (SEBS), Tensile property, Biocompatibility/Poly(trimethyleneterephthalate), Styrene–ethylene–buthylene–styrene (SEBS), Crystallization Behavior, Tensile property
相關次數: 點閱:339下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用有機環保高分子生物可分解聚乳酸Poly (lactic acid) ( PLA) /聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)由熔融混煉備製而成。以DSC,SEM和WXRD研究非恆溫結晶,熔融行為,恆溫結晶動力學,晶球型態和結晶結構。由TGA顯示隨著SEBS含量增加熱穩定性下降。形態學研究中PLA與SEBS不相容。斷裂伸長率提升,但隨著SEBS含量上升抗拉強度下降。利用小鼠成纖維細胞(mouse fibroblasts (L929))來測定PLA、PBS/SEBS Blends和SEBS的細胞相容性。PLA的細胞相容性隨著SEBS含量上升而降低

本實驗利用聚對苯二甲酸丙二酯(PTT)/聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)由熔融混煉備製而成。POM觀察PTT、PTT/SEBS Blends的晶體結構。SEM觀察PTT和SEBS的相容性。TGA結果顯示熱穩定性隨著SEBS含量增加而下降。DSC研究結晶行為,Tg隨著SEBS含量增加而上升。Avrami equation用來描述等溫結晶動力學。加入SEBS使PTT的斷裂伸長率提升。


Poly(lactic acid) (PLA)/styrene-ethylene-butylene-styrene (SEBS) Blends were prepared through melt blending. Differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WXRD) were used to characterize PLA and PLA/SEBS Blends in terms of their melting behavior and crystallization. Curves from thermal gravimetric analysis (TGA) illustrated that the thermostability increased with the SEBS content. Further morphological analysis of PLA/SEBS Blends revealed that SEBS molecules were not miscible with PLA molecules in PLA/SEBS Blends.The tensile testing for PLA and PLA/SEBS Blends showed that the elongation at break was enhanced, but tensile strength decreased with increasing SEBS content. L929 fibroblasts cells were chosen to assess the cytocompatibility; the cell growth of PLA was found to decrease with increasing SEBS content. Possible reasons for these properties of PLA/SEBS Blends were proposed in this study.

Poly(trimethyleneterephthalate)(PTT)
/styrene–ethylene–buthylene–styrene (SEBS) Blends were prepared by melt compounding. Polarizing optical microscopy was used to observe the spherulitic morphology and the crystal structure of PTT and PTT/SEBS Blends. Scanning electron microscopy was used to determine the dispersion and the compatibility of fracture surfaces of PTT and SEBS. The curves of thermal gravimetric analysis illustrated that the thermo stability decreased with increasing SEBS content. Differential scanning calorimetry was used to investigate the crystallization behavior; the result showed that the glass transition temperature of the compound increased with the SEBS content. The Avrami equation described the isothermal crystallization kinetics. Stress-strain curves for PTT and PTT/SEBS Blends showed that the elongation at break was enhanced with increasing SEBS content.

中文摘要 i 英文摘要 iii 誌 謝 v 總目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 市場分析............................................................ ...........................................2 1.3 高分子摻混系統 4 1.4 材料背景 9 1.5 研究目的 19 第二章 文獻回顧 20 2.1 玻璃轉移溫度 20 2.2 Avrami equation 21 2.3 高分子結晶速率 22 2.4 晶體成長 24 2.5 區型轉移 26 2.6 多熔融峰行為 29 2.7 結晶熱力學方程式 31 2.8 X-ray繞射理論 33 2.9 高分子機械性質..........................................................................................35 第三章 聚乳酸/聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯摻混物之生物相容性、 機械性質、熱性質及結晶性質研究 39 3.1 實驗材料 39 3.2 實驗儀器 41 3.3 摻合物配方表..…………………………..……….………….….………..42 3.4 實驗方法……………………………………………………...…………..43 (1)試樣製作 43 (2) TGA分析 43 (3) DSC分析 44 (4) XRD分析 44 (5) SEM分析 .44 (6) 機械性質................................................................................................45 (7) Biocompatibility ..……………………………………………….................................45 3.5 結果與討論 46 3.5.1 TGA分析 46 3.5.2 DSC分析 49 3.5.3 XRD分析 52 3.5.4 SEM分析.................................................................................................54 3.5.5 機械性質 56 3.5.6 Biocompatibility觀察 58 3.6 結論 60 第四章 聚對苯二甲酸丙二酯/聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯複合複材之生物 相容性、機械性質、熱性質及結晶性質研究...………………………………….…..61 4.1 實驗材料 61 4.2 實驗儀器 63 4.3 摻合物配方表..…………………………...………….………….…….….64 4.4 實驗方法……………………………………………………...……….….65 (1)試樣製作 65 (2) TGA分析 65 (4) DSC分析 65 (5) XRD分析 65 (6) SEM分析 65 (7) 機械性質..............………………………………………………................................67 4.5 結果與討論 68 4.5.1 TGA分析 68 4.5.2 DSC分析 71 4.5.3 XRD分析 87 4.5.4 POM觀察 90 4.5.5 SEM觀察 92 4.5.6 機械性質..................................................................................................94 4.6 結論 96 參考文獻 97 表目錄 表2.2.1 Avrami參數與高分子結晶型態之關係……………………….…….….22 表3.3.1 PLA/SEBS複材配方表. ..........................................................................42 表3.5.1 PLA、PLA/SEBS Blends和SEBS之TGA分析表………….….........48 表3.5.2 PLA和PLA/SEBS Blends非恆溫各數值…………………….….........51 表4.3.1 PTT/SEBS複材配方表. ...........................................................................64 表4.5.1 PTT、PTT/SEBS Blends和SEBS之TGA分析表……….…...............70 表4.5.2 PTT和PTT/SEBS Blends非恆溫各數值………………………............73 表4.5.3 各結晶溫度之Avrami參數…………………………………….….…....74 表4.5.4 Hoffman–Weeks and Lauritzen-Hoffman 各數值………………..……..77 圖目錄 圖1.1 不相容或是相容性很小的體系 5 圖1.2 兩相之間過渡層λ有限的相容 5 圖1.3 UCST與LCST相圖 7 圖1.4 乳酸聚合流程圖 11 圖1.5 L(左旋)型與D(右旋)型PLA分子結構式 ..13 圖1.6 芳香族聚酯的結構 .15 圖1.7 熱塑性彈性體分類....................................………………………………...17 圖2.1 晶核生成速率、晶體生長速率與過飽和度的關係 24 圖2.2 結晶速度與溫度關係圖........................................................................…..25 圖2.3 區型轉移(Regime)的示意圖 28 圖2.4 晶體成長與RegimeI、RegimeII、RegimeIII的關係圖 29 圖2.5 多熔融峰形成之示意圖 30 圖2.6 升溫速率不同造成之多熔融峰示意圖 30 圖2.7 Hoffman-Weeks線性外插法求得平衡熔點(Tm0)之示意圖 31 圖2.8 褶曲端表面自由能(σe)及鏈摺疊之板晶厚度(L)示意圖 33 圖2.9 Effect of fine crystallite size on diffraction curves 34 圖2.10 摻合體物性與組成的關係圖(A)協乘增補(B)加成律(C)出現最小值…. 35 圖2.11 應力-應變曲線示意圖................................................................................ 36 圖2.12 平緩降伏型式之應力-應變曲線示意圖.................................................... 36 圖2.13 高分子不同應力-應變曲線類型................................................................ 37 圖3.4.1 CNS 4369, K 64231號試樣之尺寸條件…………......................................45 圖3.5.1 PLA和PLA/SEBS Blends TGA曲線圖………………..........................47 圖3.5.2 PLA和PLA/SEBS Blends之DSC 20℃/min升溫曲線圖.....................50 圖3.5.3 PLA和PLA/SEBS Blends之WXRD圖.................................................53 圖3.5.4 PLA、PLA/SEBS Blends和SEBS之SEM圖..........................................55 圖3.5.5 PLA和PLA/SEBS Blends之機械性質……...........................................56 圖3.5.6 細胞成長3天(a) PLA, (b) PLA/SEBS-10, (c) PLA/SEBS-30, (d) SEBS……………...59 圖4.5.1 PTT、PTT/SEBS Blends 和SEBS之TGA曲線圖………………........ 69 圖4.5.2 PTT和PTT/SEBS Blends之DSC 20℃/min升溫曲線圖.................... 75 圖4.5.3 PTT/SEBS-10之Avrami 作圖.................................................................. 76 圖4.5.4 PTT、PTT/SEBS-10和PTT/SEBS-30之Hoffman-Weeks 作圖........... 79 圖4.5.5 PTT、PTT/SEBS-10和PTT/SEBS-30之Lauritzen-Hoffman作圖........ 84 圖4.5.6 PTT和PTT/SEBS Blends之WXRD圖................................................ 88 圖4.5.7 PTT、PTT/SEBS-10和PTT/SEBS-30之POM圖................................... 91 圖4.5.8 PTT、PTT/SEBS Blends和SEBS之SEM圖.......................................... 93 圖4.5.9 PTT和PTT/SEBS Blends之機械性質……........................................... 95

[1].林建中;高分子化學原理,歐亞書局有限公司(2001)
[2].Whinfield, J. R.; Dickson, J. T., “Polymeric Linear Terephthalic Esters”, U.S. Patent 2,465,319(1949).
[3].Curtis, L. G., Eswards, D., L., Simons, R.M., Trent, P. J., Von Bramer, P. T., “Investigation of Maleate-Fumarate Isomerization in Unsaturated Polyesters by Nuclear Magnetic Resonance”, Ind. Eng. Chem. Prod. Res. Dev,. 1964, 3, 218-221.
[4].Poulin-Dandurand, S., Perez, S., Revol, J.-F., Brisse, F., “The Crystal Structure of Poly(trimethylene terephthalate) by X-ray and Electron Diffraction”, Polymer, 1979, 20, 419-426
[5].Deborough, I. J. Hall, I. H. Neisser, J. Z., “The Structure of Poly(trimethylene terephthalate)”, Polymer, 1979, 20, 545-552.
[6]. H. H. Chuah, Chem. Fiber Int., vol. 46, 1996, pp. 424.
[7]. Brown H. S., Chuah H. H., Chem. Fiber Int., vol 47, 72 (1997).
[8].李豐祥,專業新知,37期,南亞塑膠公司,2001。
[9].E. P. Moore, Jr, “PP handbook:Introduction”, Hanser, NY.
[10].S. M. Dwyer, O. M. Boutni, C. C shu, “PP Handbook:Compounded Polypropylene Products”, Hanser, NY.
[11].黃敏譯,世界聚丙烯纖維的增長需求,國外紡織技術,(4):1(1997)。
[12].T. G. Fox, Bull. Am. Phys. Soc., vol. 1, 123 (1956)
[13].李育德、顏文意、莊祖徨,聚合物物性,高立圖書有限公司,1996。
[14].Avrami M., J Chem. Phys., vol. 7, 1103 (1939)
[15].B. Andricic´ et al. / Polymer Degradation and Stability 79 (2003) 265–270
[16].B. Andricic´ et al. / Polymer Degradation and Stability 78 (2002) 459–465
[17].Marcel Mulder,"Basic Principles of Membrane Technology",Kluwer Academic Publishers,Londen,Chap.2 and Chap.5(1991)
[18]. 王建智,"製膜溶劑對聚(1-三甲基矽烷-1-丙炔)膜之氣體滲透性隨時間下降行為的影響",碩士論文,元大大學化學工程所,桃園(2001)
[19].McCaig,M.S. and D.R.Paul,"Effect of film thickness on the changes in the gas permeability of a glassy polyacylatedue to physical aging Part I,"polymer,Vol.41,pp.629-637(2000)
[20].McCaig,M.S. and D.R.Paul,"Effect of film thickness on the changes in the gas permeability of a glassy polyacylatedue to physical aging Part II,"polymer,Vol.41,pp.639-648(2000)
[21].Avrami M., J Chem. Phys., vol. 7, 1103 (1939).
[22].Avrami M., J Chem. Phys., vol. 8, 212 (1940).
[23].Avrami M., J Chem. Phys., vol. 9, 177 (1941).
[24].B. Wunderlich, Macromolecular Physics, Vol. 3, Academic Press, New York (1976).
[25].Hoffman JD, Davis GT, Lauritzen Jr. JI., vol.3. New York:Plenum
Press,(1976) Chapter7.
[26].Chan TW. Isayev AI. Polym. Engng. Sci, 4, 461 ( 1994).
[27].Gedde, U. W. Polymer Physics, Chapman & Hall, London (1996).
[28].Kim, H.-G. and Robertson, R. E., J. Polym. Sci. Polym. Phys. Ed., (1998), 36, 1757-1767.
[29].Lee, J. W., Lee, S. W., Ree, M., Macromo. Chem. Phys., (2001), 202, 3072-3080
[30].H.L. Chen; J. C. Hwang; C. C. Chen, Polymer, 37, 5461 (1996).
[31].L. H. Sperling, Physical Polymer Science, New York:A John Wiley & Sons, (2001), p. 131.
[32].Do Y. Yoon, Paul J. Flory, Macromolecules, 17, 868 (1984).
[33].Cullity, B. D. Elements of X-ray Diffraction, 2nd ed. (1978). p. 102.
[34].Paul J. Flory, Do Y. Yoon, Ken A. Dill, Macromolecules, 17, 862 (1984).
[35].D. R. Paul, and J. W. Barlow, J. Macromal. Sci., Rev. Macromol. Chem., C18, 109 (1980)
[36].A.F. Yee, Polym. Eng. Sci., 17, 213 (1977)
[37].A.J. Lovinger, and M. L. Williams, J. Appl. Polym. Sci., 25 1703 (1980)
[38].國國家家標準(CNS),塑膠之抗拉性能試驗法,總號:4396,類號:K6423
[39].R. Seymour, Introduction to Polymer Chemistry, McGraw-Hill, N. Y. 1971
[40].Huajun Zhou, Thomas B. Green, Yong Lak Joo, Polymer 47 (2006) 7497-7505.
[41].溫禮鴻;聚丙烯/聚對苯二甲酸丙二酯摻合體之相容性及結晶行為研究,國立台北科技大學有機高分子研究所碩士論文(2005) 。
[42].溫家坤;聚乳酸/聚對苯二甲酸丙二酯摻合體之相容性及結晶行為研究,國立台北科技大學有機高分子研究所碩士論文(2007)
[43].劉秉塵;聚乳酸/聚對苯二甲酸丙二酯摻合體之結晶動力學及型態學與相容性之研究 ,國立台北科技大學有機高分子研究所碩士論文(2008)
[44].胡德;高分子物理與機械性質(下),渤海堂文化公司(1990)
[45].Varga, J. In Polypropylene Structure, Blends and Composites; Karger-Kocsis, J., Ed.; Chapman & Hall: London, (1995); Vol. 1
[46]. Huajun Zhou, Thomas B. Green, Yong Lak Joo, Polymer 47 (2006) 7497-7505.
[47]. Jieh-Ming Huang, Feng-Chin Chang, Journal of Polymer Science: Part B: Polymer Physics, Vol. 38. 934-941 (2000).
[48]. Roiman DB, Marand H, Miller RL, Hoffman JD. J phys Chem (1989) ; 93 : 6919.
[49]. Huajun Zhou, Thomas B. Green, Yong Lak Joo, Polymer 47 (2006) 7497-7505.
[50]. Jun Wuk Park, Seung Soon Im, Applied Polymer Science 86, (2002) 647-655.
[51].Rong-Ming Ho, Kae-Zen Ke, and Ming Chen, Macromolecules, vol33, p 7529–7537 (2000).
[52].柯凱仁;聚對苯二甲酸二丙酯的結晶結構與結晶型態之探討,國立中山大學材料科學研究所碩士論文(1999)。
[53].M. Day*, A. Victoria Nawaby, X. Liao, Thermal Analysis and Calorimetry, 86, (2006) 623-629.
[54].I. Ohkoshi, H. Abe, Y. Doi, Polymer 41 (2000) 5985-5992
[55].黃智宏,聚醯亞胺/矽烷耦合劑改質多壁奈米碳管之奈米材料的性質探討,民國99年7 月
[56].Li H, Chang J, Cao A,Wang J. In vitro evaluation of biodegradable poly(butylenes succinate) as a novel biomaterial. Macromol Biosci2005;5:433–40.
[57].Fujimaki T. Processability and properties of aliphatic polyesters,‘BIONOLLE’,synthesized by polycondensation reaction. Polym Degrad Stab 1998;59:209–14.
[58].Polymer Degradation and Stability 94 (2009) 632–637
[59].Polymer 49 (2008) 4602–4611
[60].Baughman RH, Zakhidov AA, de Heer WA. Science 2002;297:787.
[61].Journal ofAppliedPolymer Science,Vol. 111, 2938–2945 (2009)6
[62].Journal of Polymer Science: Part B: Polymer Physics, Vol. 43,
3231–3241 (2005)
[63].Macromol. Mater. Eng. 2008, 293, 930–938
[64].Polymer 47 (2006) 6429e6437
[65].Polymer 41 (2000) 8449–8454
[66].Journal of Polymers and the Environment, Vol. 13, No. 2, April 2005
[67].Polymer Degradation and Stability 94 (2009) 90–94
[68].Ajayan, P. M.; Schadler, L. S.; Braun, P. V. Nanocomposite Scienceand
Technology; Wiley-VCH: Weinheim, 2003.
[69].Journal of Polymer Science: Part B: Polymer Physics, Vol. 43, 3231–3241 (2005)
2005 Wiley Periodicals, Inc.
[70]. Macromol. Mater. Eng. 2008, 293, 930–938-2008 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim
[71].Polym Int 51:239-244 (2002)
[72].Polymer 47 (2006) 6429e6437
[73].Biomacromolecules 2001, 2, 605-613

[74].游智翔,聚乳酸/聚對苯二甲酸丙二酯/甲基丙烯酸酯-丁二烯-苯乙烯摻合體之結晶行為與熱性質探討,民國98年7 月
[75].O-okayama, Megro-ku, Tokyo Department of Organic and Polymeric Materials, Tokyo Institute of Technology, S8-34, 2-12-1 152-8552, Japan
[76].林三外,聚乳酸/聚對苯二甲酸丙二酯、聚對苯二甲酸丙二酯/聚丙烯和聚乳酸/聚對苯二甲酸丙二酯/甲基丙烯酸酯-丁二烯-苯乙烯摻合體之結晶行為與熱性質探討,民國99三外年7 月

QR CODE