簡易檢索 / 詳目顯示

研究生: 李玟儀
LEE WEN I
論文名稱: 探討胺基酸改質聚乙二醇/聚乳酸-羥基乙酸之三團聯共聚物於微胞與成膠行為及其放射線響應於癌症治療之研究
The study of micelles and gel formation from the amino acid modified the tri-block polyethylene glycol-b-poly(D,L-lactic-co-glycolic acid): The effect of radiation on anti-cancer drug release and in vitro cell toxicity
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 蔡協致
TSAI,HSIEH-CHIH
林宣因
LIN,HSUAN-YIN
陳玉暄
CHEN,YU-HSUAN
楊銘乾
YANG,MING-CHIEN
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 134
中文關鍵詞: 聚乙二醇/聚乳酸-羥基乙酸三團聯共聚物微胞成膠放射線響應癌症治療
外文關鍵詞: polyethylene glycol-b-poly(D,L-lactic-co-glycolic acid), triblock, micelle, gel formation, radiation, anti-cancer drug release and in vitro cell toxicity
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討胺基酸改質三團聯共聚物(OH-PLGA-PEG-PLGA-OH)在高分子微胞中疏水端內,評估其抗癌藥物輸送與合併放射線治療之效益。三團聯共聚物OH-PLGA-PEG-PLGA-OH,PLGA設計疏水鏈段,固定親水鏈段PEG,設計較短且不同莫爾比例PLGA鏈段,使得尾端基改質胺基酸效用顯著。三種胺基酸分別為鹼性應答性胺基酸(L-Histidine)、弱疏水性胺基酸(L-Tyrosine)、強疏水性胺基酸(L-Tryptophan),由於疏水端鏈段作用力改變,其粒徑也會隨著外界環境中pH值而變化,其中Tyrosine-PLGA-PEG-PLGA-Tyrosine複合型微胞、Tryptophan-PLGA-PEG-PLGA-Tryptophan複合型微胞在體溫形成膠體,也使此類材料有機會可以做為注射型水膠在局部藥物輸送上之應用,並探討全新的 「功能性複合型奈米微胞」。 Tryptophan-PLGA-PEG-PLGA-Tryptophan複合型藥物微胞於 pH 5+5Gy radiation,可將藥物釋放出且釋放率可高達 80%以上,並呈穩定釋放的效果。Tyrosine-PLGA-PEG-PLGA-Tyrosine複合型藥物微胞於 pH 5+5Gy radiation,可將藥物釋放出且釋放率可高達 70%以上。此外,將包覆藥物之奈米微胞與子宮頸癌細胞(HeLa)、小鼠的成纖維細胞(NIH-3T3)共同培養 24 小時後,複合型藥物微胞相對於裸藥DOX 可緩慢釋放藥物。細胞胞飲之複合型藥物微胞(Tryptophan-PLGA-PEG-PLGA-Tryptophan)一段時間後照射 5Gy 放射線於對子宮頸癌細胞(HeLa)、小鼠的成纖維細胞(NIH-3T3)之細胞存活率大幅降低,因此,Tryptophan-PLGA-PEG-PLGA-Tryptophan藥物微胞具有放射線響應性。


The amino acid has been modified at the hydrophobic end of triblock copolymer (OH-PLGA-PEG-PLGA-OH) and evaluated its anticancer drug release and therapeutic effects when combined with radiotherapy. The triblock copolymer, OH-PLGA-PEG-PLGA-OH, has been evaluated with different chain length of hydrophobic PLGA and fixed chain length of hydrophilic PEG. We have to design the short hydrophobic chain of PLGA and therefore the effects of tail amino acid can be examined. So, the three types of amino acids were basic based L-Histidine, hydrophobic L-Tyrosine and hydrophobic L-Tryptophan. Owing to molecule interaction in the hydrophobic chain, its particle size also changed with the pH value of the external environment. Tyrosine-PLGA-PEG-PLGA-Tyrosine and Tryptophan-PLGA-PEG-PLGA-Tryptophan formed stable micelles at low temperatgel and become the hydrogel at body temperature, which provides opportunities for these materials to be used as injection hydrogels for local drug delivery.
The drug release from the Tryptophan-PLGA-PEG-PLG micelles shwed 80% at pH 5 with 5 Gy radiation. However, the less drug release from Tyrosine-PLGA-PEG-PLGA-Tyrosine around 70% of drugs at pH 5 with 5 Gy radiation. When drug-encapsulated micelles and co-cultured with HeLa cervical cancer cells and NIH-3T3 mouse fibroblasts for 24 h, the drug could slowly release from the micelle, which hae been evaluated by fluroscence micrscopy. Finally, the viability of HELA and NIH-3T3 cells decreased when the drug loaded Tryptophan-PLGA-PEG-PLGA-Tryptophan micelles has been endocytosis and treated with 5 Gy of radiation. The tryptophan modified PLGA-PEG-PLGA has been proved to have themrals responsive sol-gel trasition effect and capable to responsive with external gamma radiation to let the loaded drug released from carrier.

摘要 iii Abstract vi 目錄 viii 一、研究動機與背景 1 二、文獻回顧 3 2.1 高分子奈米微胞 3 2.2高分子奈米微胞藥物包覆原理 6 2.3奈米藥物載體於癌症治療之傳遞模式 9 2.4奈米藥物載體於癌症治療應用 13 2.4.1傳統性奈米粒子 13 2.4.2溫度應答型微胞/改質尾端基成膠行為 14 2.4.3酸鹼應答型微胞 16 2.5放射線於癌症治療應用 18 2.6聚乙二醇(Polyethylene Glycol,PEG)之性質以及在藥物釋放之應用 19 2.7丙交酯(DL-Lactide)之性質以及在藥物釋放之應用 20 2.8乙交酯(Glycolide)之特性 21 2.9 胺基酸性質 22 2.9.1 L-組胺酸(L-Histidine)之性質及其在藥物釋放之應用 24 2.9.2 L-酪胺酸(L-Tyrosine) 之性質以及在藥物釋放之應用 25 2.9.3 L-色胺酸(L-Tryptophan) 之性質以及在藥物釋放之應用 26 2.10阿黴素(Doxorubicin,Dox) 27 2.11合成複合型微胞/改質尾端基之研究概要 28 第三章 實驗材料與方法 29 3.1研究設計 29 3.2實驗材料 30 3.2.1實驗藥品 30 3.2.2實驗溶劑 34 3.3實驗儀器與設備 37 3.3.1傅立葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy) 37 3.3.2液態核磁共振光譜(Nuclear Magnetic Resonance Spectrometer) 37 3.3.3拉曼光譜儀(Raman Spectrometer) 37 3.3.4凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 38 3.3.5動態光散射分析儀(Dynamic Light Scattering,DLS) 38 3.3.6光致螢光光譜儀(Photoluminescence,PL) 39 3.3.7紫外線可見光光譜儀(UV/Vis Spectrophotometer) 39 3.3.8高解析度場發射掃描式電子顯微鏡(Scanning Electron Microscope) 40 3.3.9原子力顯微鏡(Atomic Force Microscpoic,AFM) 40 3.3.10斜式旋轉濃縮機(Rotary Evaporation) 40 3.3.11桌上型酸鹼度計(pH Meter) 41 3.3.12振盪混合器(Vortex Mixer) 41 3.3.13二氧化碳培養箱(CO2 incubators) 42 3.4實驗步驟合成 43 3.4.1 複合型共聚物OH-PLGA-PEG-PLGA-OH之合成 43 3.4.2溫度應答型共聚物Tyrosine-PLGA-PEG-PLGA-Tyrosine/Tryptophan-PLGA-PEG-PLGA-Tryptophan之合成/酸鹼應答型共聚物Histidine-PLGA-PEG-PLGA-Histidine之合成 44 3.5複合型共聚物之結構鑑定與分析 47 3.5.1傅立葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy) 47 3.5.2液態核磁共振光譜(Nuclear Magnetic Resonance Spectrometer) 47 3.5.3拉曼光譜儀(Raman Spectrometer) 47 3.5.4凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 48 3.6樣品製備 49 3.6.1奈米微胞製備 49 3.6.2奈米微胞刺激響應檢測 49 3.6.3原子力顯微鏡奈米微胞製備 49 3.6.4胺基酸改質複合型微胞成膠製備(Tyrosine-PLGA-PEG-PLGA-Tyrosine、 50 Tryptophan-PLGA-PEG-PLGA-Tryptophan) 50 3.6.5 複合型藥物微胞製備 50 3.6.6臨界微胞濃度(Critical Micelle Concentration,CMC) 51 3.6.7 Dox藥物濃度檢量線(Dox Drug Concentration Calibration Curve) 52 3.6.8 Dox包覆率(Drug Loading Efficiency) 52 3.6.9體外藥物釋放模擬 52 3.7細胞生物性製備 54 3.7.1磷酸鹽緩衝生理鹽水(Phosphate buffered saline,PBS) 54 3.7.2胰蛋白酶(Trypsin) 54 3.7.3細胞培養基(Dulbecco's Modified Eagle Medium,DMEM) 54 3.7.4細胞解凍培養 54 3.7.5細胞培養條件 55 3.7.6染色與數細胞 55 3.7.7細胞生物毒性測試 56 3.7.8共軛交顯微鏡觀察藥物分佈與複合型微胞之內吞作用 56 第4章 結果與討論 58 4.1 複合型OH-PLGA-PEG-PLGA-OH合成與鑑定 58 4.1.1 Tyrosine-PLGA-PEG-PLGA-Tyrosine/Tryptophan-PLGA- PEG-PLGA-Tryptophan/Histidine-PLGA-PEG-PLGA-Histidine合成與鑑定 62 4.2材料性質分析 68 4.2.1臨界微胞濃度(critical micelle concentration, CMC)之鑑定 68 4.2.2粒徑分析DLS之鑑定 72 4.2.3原子力顯微鏡AFM之影像 75 4.2.5 利用掃描電子顯微鏡SEM觀察對於複合型微胞在不同濃度成膠型貌 80 4.2.6複合型微胞放射線響應之鑑定 82 4.3藥物奈米微胞分析之鑑定 84 4.3.1藥物包覆率之鑑定 84 4.3.2體外藥物釋放Drug Release In Vitro之鑑定 86 4.3.3細胞毒性測試Cytotoxicity Test之鑑定 89 4.3.4體外細胞毒性測試In vitro cytotoxicity test之鑑定 91 4.3.5複合型藥物微胞細胞凋亡測試 102 4.3.6複合型藥物微胞與放射線之細胞存活率測試 107 五、結論 112 六、未來展望 116 七、參考資料 117

1. Somiya, M., Q. Liu, and S. Kuroda, Current Progress of Virus-mimicking Nanocarriers for Drug Delivery. Nanotheranostics, 2017. 1(4): p. 415-429.
2. Allen, T.M. and P.R. Cullis, Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev, 2013. 65(1): p. 36-48.
3. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev, 2004. 56(11): p. 1649-59.
4. Xu, Y., Y. Ji, and J. Ma, Hydrophobic and Hydrophilic Effects in a Mussel-Inspired Citrate-Based Adhesive. Langmuir, 2021. 37(1): p. 311-321.
5. Cheng, J. and J. Wang, Syntheses of amphiphilic biodegradable copolymers of poly(ethyl ethylene phosphate) and poly(3-hydroxybutyrate) for drug delivery. Science in China Series B: Chemistry, 2009. 52(7): p. 961-968
6. Kim, P., et al., Hydroglyphics: Demonstration of Selective Wetting on
Hydrophilic and Hydrophobic Surfaces. Journal of Chemical Education, 2012.
90(5): p. 625-628.
7. Liu, Y., et al., Suppressing Nanoparticle-Mononuclear Phagocyte System Interactions of Two-Dimensional Gold Nanorings for Improved Tumor Accumulation and Photothermal Ablation of Tumors. ACS Nano, 2017. 11(10): p. 10539-10548.
8. Cheng, F., et al., Characteristic of core materials in polymeric micelles effect on their micellar properties studied by experimental and dpd simulation methods. Int J Pharm, 2015. 492(1-2): p. 152-60.
9. Tang, L., et al., Macromolecular crowding of molecular imprinting: A facile pathway to produce drug delivery devices for zero-order sustained release. Int J Pharm, 2015. 496(2): p. 822-33.
10. Tang, Y., et al., Overcoming the Reticuloendothelial System Barrier to Drug Delivery with a "Don't-Eat-Us" Strategy. ACS Nano, 2019. 13(11): p. 13015-13026.
11. Dai, Z.-J., et al., Sonodynamic therapy (SDT): A novel treatment of cancer based on sonosensitizer liposome as a new drug carrier. Medical Hypotheses, 2013. 80(3): p. 300-302.
12. Mukherjee, D., et al., Targeting the Trypanothione Reductase of Tissue-Residing Leishmania in Hosts' Reticuloendothelial System: A Flexible Water-Soluble Ferrocenylquinoline-Based Preclinical Drug Candidate. J Med Chem, 2020. 63(24): p. 15621-15638.
13. Kojima, R., et al., Synthesis of Amphiphilic Copolymers by Soap-free Interface-
Mediated Polymerization. Polymer Journal, 2009. 41(5): p. 370-373.
14. Modi, S., et al., A DNA nanomachine that maps spatial and temporal pH
changes inside living cells. Nat Nanotechnol, 2009. 4(5): p. 325-30
15. Zhang, F., et al., Cathepsin B Dependent Cleavage Product of Serum Amyloid
A1 Identifies Patients with Chemotherapy-Related Cardiotoxicity. ACS Pharmacol
Transl Sci, 2019. 2(5): p. 333-341.
16. Lapteva, M., M. Möller, and Y.N. Kalia, Polymeric Micelles in Dermal and
Transdermal Delivery, in Percutaneous Penetration Enhancers Chemical Methods
in Penetration Enhancement. 2016. p. 223-240.
17. Pham, D.T., et al., Polymeric micelles for pulmonary drug delivery: a comprehensive review. Journal of Materials Science, 2020. 56(3): p. 2016-2036.
18. Hu, C.M. and L. Zhang, Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol, 2012. 83(8): p. 1104-11.
19. Lu, B., et al., Redox-Sensitive Hyaluronic Acid Polymer Prodrug Nanoparticles for Enhancing Intracellular Drug Self-Delivery and Targeted Cancer Therapy. ACS Biomater Sci Eng, 2020. 6(7): p. 4106-4115.
20. Kalaska, B., et al., Anticoagulant Properties of Poly(sodium 2-(acrylamido)-2-
methylpropanesulfonate)-Based Di- and Triblock Polymers. Biomacromolecules, 2018. 19(7): p. 3104-3118.
21. Dhahri, M., et al., Extraction, Characterization, and Anticoagulant Activity of
a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS Omega, 2020. 5(24):
p. 14786-14795.
22. Wang, J., et al., Fabrication of a Dual-Action Membrane with Both
Antibacterial and Anticoagulant Properties via Cationic Polyelectrolyte-Induced
Phase Separation. ACS Appl Mater Interfaces, 2021. 13(13): p. 14938-14950.
23. Fischer, P.M., Design of Small-Molecule Active-Site Inhibitors of the S1A
Family Proteases as Procoagulant and Anticoagulant Drugs. J Med Chem, 2018.
61(9): p. 3799-3822.
24. Nahain, A.A., et al., Anticoagulant Heparin Mimetics via RAFT Polymerization.
Biomacromolecules, 2020. 21(2): p. 1009-1021.25. Valimaki, S., et al., Effect of
PEG-PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex
Formation with Heparin. Biomacromolecules, 2016. 17(9): p. 2891-900.
26. Somszor, K., et al., Amphiphilic Core Cross-Linked Star Polymers for the
Delivery of Hydrophilic Drugs from Hydrophobic Matrices. Biomacromolecules,
2021. 22(6): p. 2554-2562.
27. Torii, S.; Jinnouchi, H.; Sakamoto, A.; Kutyna, M.; Cornelissen, A.; Kuntz,
S.; Guo, L.; Mori, H.; Harari, E.; Paek, K. H.; et al. Drugeluting coronary
stents: insights from preclinical and pathology studies. Nat. Rev. Cardiol. 2020,
17, 37−51.
28. Somszor, K., et al., Amphiphilic Core Cross-Linked Star Polymers for the
Delivery of Hydrophilic Drugs from Hydrophobic Matrices. Biomacromolecules,
2021. 22(6): p. 2554-2562.
29. Armstrong, D. K.; White, A. J.; Weil, S. C.; Phillips, M.; Coleman, R. L.
Farletuzumab (AMonoclonal Antibody Against Folate Receptor Alpha) in
Relapsed Platinum-Sensitive Ovarian Cancer. Gynecol. Oncol. 2013, 129,
452−458.
30. Li, P.; Yang, Z.; Wang, Y.; Peng, Z.; Li, S.; Kong, L.; Wang, Q.
Microencapsulation of Coupled Folate and Chitosan Nanoparticles for Targeted
Delivery of Combination Drugs to Colon. J. Microencapsulation 2015, 32,
40−45.
31. Werengowska-Ciećwierz, K., et al., The Chemistry of Bioconjugation in
Nanoparticles-Based Drug Delivery System. Advances in Condensed Matter
Physics, 2015. 2015: p. 1-27.
32. Liu, Y., et al., The enhanced permeability and retention effect based
nanomedicine at the site of injury. Nano Research, 2020. 13(2): p. 564-569.
33. Rehman, F.U., et al., Biomedical applications of nano-titania in theranostics
and photodynamic therapy. Biomater Sci, 2016. 4(1): p. 40-54
34. Xie, X., et al., Challenges and Opportunities from Basic Cancer Biology for
Nanomedicine for Targeted Drug Delivery. Curr Cancer Drug Targets, 2019.
19(4): p. 257-276.
35. Wang, Z., et al., Tumor-Derived IL-35 Promotes Tumor Growth by Enhancing Myeloid Cell Accumulation and Angiogenesis. The Journal of Immunology, 2013. 190(5): p. 2415-2423.
36. Chen, S. and R. Chen, A Virus-Mimicking, Endosomolytic Liposomal System for Efficient, pH-Triggered Intracellular Drug Delivery. ACS Appl Mater Interfaces, 2016. 8(34): p. 22457-67.
37. Wallabregue, A., et al., Selective Imaging of Late Endosomes with a pH-Sensitive Diazaoxatriangulene Fluorescent Probe. J Am Chem Soc, 2016. 138(6): p. 1752-5.
38. Torchilin, V. P. Multifunctional, Stimuli-Sensitive Nano particulate Systems for Drug Delivery. Nat. Rev. Drug Discovery 2014, 13 (11), 813−827.
39. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-Responsive Nanocarriers for Drug
Delivery. Nat. Mater. 2013, 12 (11), 991−1003.
40. Eccleston, M. E.; Kuiper, M.; Gilchrist, F. M.; Slater, N. K. H. pH-Responsive Pseudo-Peptides for Cell Membrane Disruption. J. Controlled Release 2000, 69 (2), 297−307.
41. Somszor, K., et al., Amphiphilic Core Cross-Linked Star Polymers for the Delivery of Hydrophilic Drugs from Hydrophobic Matrices. Biomacromolecules, 2021. 22(6): p. 2554-2562.
42. Zhou, Y., et al., Lysosome-Mediated Cytotoxic Autophagy Contributes to Tea Polysaccharide-Induced Colon Cancer Cell Death via mTOR-TFEB Signaling. J Agric Food Chem, 2021. 69(2): p. 686-697.
43. Zeng, J., et al., Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery. Mol Pharm, 2015. 12(12): p. 4188-99.
44. Choi, Y., et al., pH- and temperature-responsive radially porous silica nanoparticles with high-capacity drug loading for controlled drug delivery. Nanotechnology, 2020. 31(33): p. 335103.
45. Xu, M., et al., PEG-Detachable Polymeric Micelles Self-Assembled from Amphiphilic Copolymers for Tumor-Acidity-Triggered Drug Delivery and Controlled Release. ACS Appl Mater Interfaces, 2019. 11(6): p. 5701-5713.
46. Kamimura, M., et al., Enhanced intracellular drug delivery of pH-sensitive doxorubicin/poly(ethyleneglycol)-block-poly(4-vinylbenzylphosphonate) nanoparticles in multi-drug resistant human epidermoid KB carcinoma cells. Biomater Sci, 2013. 1(4): p. 361-367.
47. Zhang, K., et al., Synthesis of temperature-responsive poly(N-isopropyl acrylamide)/poly(methyl methacrylate)/silica hybrid capsules from inverse pickering emulsion polymerization and their application in controlled drug release. Langmuir, 2010. 26(11): p. 7971-80.
48. Zhang, Y. and W.G. Chapman, Modeling Lower Critical Solution Temperature
Behavior of Associating Dendrimers Using Density Functional Theory. Langmuir,
2019. 35(33): p. 10808-10817.
49. Wang, Z.C., et al., In situ formation of thermosensitive PNIPAAm-based
hydrogels by Michael-type addition reaction. ACS Appl Mater Interfaces, 2010. 2(4):
p. 1009-18.
50. Wang, Z.C., et al., In situ formation of thermosensitive PNIPAAm-based hydrogels by Michael-type addition reaction. ACS Appl Mater Interfaces, 2010. 2(4): p. 1009-18.
51. Fathi, M., A.A. Entezami, and R. Pashaei-Asl, Swelling/deswelling, thermal, and rheological behavior of PVA-g-NIPAAm nanohydrogels prepared by a facile free-radical polymerization method. Journal of Polymer Research, 2013. 20(5).
52. Fentahun Darge, H., et al., Multifunctional drug-loaded micelles encapsulated in thermo-sensitive hydrogel for in vivo local cancer treatment: Synergistic effects of anti-vascular and immuno-chemotherapy. Chemical Engineering Journal, 2021. 406.
53. Phan, H.T., et al., Temperature-responsive self-assembly of charged and uncharged hydroxyethylcellulose-graft-poly(N-isopropylacrylamide) copolymer in aqueous solution. Colloid Polym Sci, 2011. 289(9): p. 993-1003.
54. Alexander, A., et al., Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide)
(PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.
Eur J Pharm Biopharm, 2014. 88(3): p. 575-85.
55. Begum, G., et al., In Situ Strategy to Encapsulate Antibiotics in a Bioinspired CaCO3 Structure Enabling pH-Sensitive Drug Release Apt for Therapeutic and Imaging Applications. ACS Appl Mater Interfaces, 2016. 8(34): p. 22056-63.
56. Zhou, T., et al., Phasor-Fluorescence Lifetime Imaging Microscopy Analysis
to Monitor Intercellular Drug Release from a pH-Sensitive Polymeric Nanocarrier.
Anal Chem, 2018. 90(3): p. 2170-2177.
57. Luo, Z., et al., pH-Sensitive Vesicles Formed by Amphiphilic Grafted Copolymers with Tunable Membrane Permeability for Drug Loading/Release: A Multiscale Simulation Study. Macromolecules, 2016. 49(16): p. 6084-6094.
58. Zhou, X.X., et al., pH-responsive polymeric micelles self-assembled from
amphiphilic copolymer modified with lipid used as doxorubicin delivery carriers. R
Soc Open Sci, 2018. 5(3): p. 171654.
59. Chollakup, R., et al., Polyelectrolyte Molecular Weight and Salt Effects on the
Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium
Salt and Poly(allylamine) Hydrochloride. Macromolecules, 2013. 46(6): p. 2376-
2390.
60. Khutoryanskiy, V.V., Hydrogen-bonded interpolymer complexes as materials for pharmaceutical applications. Int J Pharm, 2007. 334(1-2): p. 15-26.
61. Wu, S.Y., et al., Radiation-Sensitive Dendrimer-Based Drug Delivery System.
Adv Sci (Weinh), 2018. 5(2): p. 1700339.
62. Singh, R. and J.W. Lillard, Jr., Nanoparticle-based targeted drug delivery. Exp
Mol Pathol, 2009. 86(3): p. 215-23.
63. Chandel, A.K., C.U. Kumar, and S.K. Jewrajka, Effect of Polyethylene Glycol
on Properties and Drug Encapsulation-Release Performance of
Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone
Amphiphilic Co-Network Gels. ACS Appl Mater Interfaces, 2016. 8(5): p. 3182-92.
64. N.Wiradharma,Y.Zhang,S.Venkataraman,J.L.Hedrick,Y.Y.Yang,Self-
assembledpolymer nanostructures for delivery od anticancer therapeutics,NanoToday.
2009,4,p.302-317
65. Eckman, A.M., et al., Drug release patterns and cytotoxicity of PEG-
poly(aspartate) block copolymer micelles in cancer cells. Pharm Res, 2012. 29(7): p.
1755-67.
66. Ponta, A. and Y. Bae, PEG-poly(amino acid) block copolymer micelles for
tunable drug release. Pharm Res, 2010. 27(11): p. 2330-42.
67. Lin, Y., et al., Water-soluble chitosan-quantum dot hybrid nanospheres toward
bioimaging and biolabeling. ACS Appl Mater Interfaces, 2011. 3(4): p. 995-1002.
68. Mannu, R., et al., Polyethylene Glycol Coated Magnetic Nanoparticles: Hybrid
Nanofluid Formulation, Properties and Drug Delivery Prospects. Nanomaterials
(Basel), 2021. 11(2)..
69. Wang, Q., et al., Alginate/polyethylene glycol blend fibers and their properties for drug controlled release. J Biomed Mater Res A, 2007. 82(1): p. 122-8.
70. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect.
Adv Drug Deliv Rev, 2011. 63(3): p. 131-5.
71. Osada, K., R.J. Christie, and K. Kataoka, Polymeric micelles from
poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery.
J R Soc Interface, 2009. 6 Suppl 3: p. S325-39.
72. Liu, S., et al., Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating with Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA). Polymers (Basel), 2020. 12(2).
73. Valente, T.A.M.; Silva, D.M.; Gomes, P.S.; Fernandes, M.H.; Santos, J.D.; Sencadas, V. Effect of sterilization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. Adv. Drug Deliver. Rev. 2016, 8, p.3241–3249.
74. Madhavan, N.K.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresource Technol. 2010, 101, p.8493–8501.
75. Nakano, Y.; Hori, Y.; Sato, A.; Watanabe, T.; Takada, S.; Goto, H.; Inagaki, A.; Ikada, Y.; Satomi, S. Evaluation of a poly(L-lactic acid) stent for sutureless vascular anastomosis. Ann. Vasc. Surg. 2009, 23, p.231–238
76. Hurrell S, Cameron RE. Polyglycolide: degradation and drug release. Part II:
drug release. J Mater Sci: Mater Med 2001,12,p.817-820.
77. Sanko, V., et al., A versatile method for the synthesis of poly(glycolic acid): high
solubility and tunable molecular weights. Polymer Journal, 2019. 51(7): p. 637-647.
78. Allison, S.D. Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic)acid microparticle drug delivery systems. J. Pharm. Sci. 2008, 97,p.2022–2035
79. Mundargi, R.; Babu, V.; Rangaswamy, V.; Patel, P.; Aminabhavi, T. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release 2008, 125, p.193–209
80. dos Santos Peleias Junior, F., et al., Synthesis of PLGA using a C 3-symmetric Zr
(IV) amine tris(phenolate) alkoxide initiator and the effects of gamma radiation on
its properties. Polymer Bulletin, 2016. 74(1): p. 91-105.
81. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as
Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel), 2011. 3(3): p.
1377-1397.
82. McPherson, A. and J.A. Gavira, Introduction to protein crystallization. Acta
Crystallogr F Struct Biol Commun, 2014. 70(Pt 1): p. 2-20.
83. Roeseler, D.A., et al., Muscle Protein Signaling in C2C12 Cells Is Stimulated to
Similar Degrees by Diverse Commercial Food Protein Sources and Experimental Soy
Protein Hydrolysates. J Agric Food Chem, 2017. 65(14): p. 2956-2964.
84. Butteiger, D. N.; Cope, M.; Liu, P.; Mukherjea, R.; Volpi, E.; Rasmussen, B. B.; Krul, E. S. A soy, whey and caseinate blend extends postprandial skeletal muscle protein synthesis in rats. Clin. Nutr. 2013, 32, 585−591.
85. Li, Z., et al., Rational Design of Multifunctional Polymeric Nanoparticles Based on Poly(l-histidine) and d-alpha-Vitamin E Succinate for Reversing Tumor Multidrug Resistance. Biomacromolecules, 2018. 19(7): p. 2595-2609.
86. Ravanfar, R. and A. Abbaspourrad, l-Histidine Crystals as Efficient Vehicles
to Deliver Hydrophobic Molecules. ACS Appl Mater Interfaces, 2019. 11(42):
p. 39376-39384.
87. Zhang, X., et al., Poly(l-histidine) based triblock copolymers: pH induced
reassembly of copolymer micelles and mechanism underlying endolysosomal escape
for intracellular delivery. Biomacromolecules, 2014. 15(11): p. 4032-45
88. Johnson, R.P., et al., Poly(PEGA)-b-poly(L-lysine)-b-poly(L-histidine) Hybrid
Vesicles for Tumoral pH-Triggered Intracellular Delivery of Doxorubicin
Hydrochloride. ACS Appl Mater Interfaces, 2015. 7(39): p. 21770-9.
89. Johnson, R.P., et al., Dual stimuli-responsive poly(N-isopropylacrylamide)-b-
poly(L-histidine) chimeric materials for the controlled delivery of doxorubicin into
liver carcinoma. Biomacromolecules, 2013. 14(5): p. 1434-43.
90. Johnson, R. P.; Jeong, Y- I.; John, J. V.; Chung, C. W.; Kang, D. H.; Selvaraj,
M.; Suh, H.; Kim, I. Dual Stimuli-Responsive poly(N-isopropylacrylamide)-b-
poly(L-histidine) Chimeric Materials for the Controlled Delivery of Doxorubicin
into Liver Carcinoma. Biomacro molecules 2013, 14(5), p.1434−1443
91. Johnson, R. P.; Jeong, Y- I.; John, J. V.; Chung, C. W.; Choi, S. H.; Song, S.Y.;
Kang, D. H.; Suh, H.; Kim, I. Lipo-poly(L-histidine) Hybrid Materials with pH-
sensitivity, Intracellular Delivery Efficiency, and Intrinsic Targetability to Cancer
Cells. Macromol. Rapid Commun. 2014, 35(59), p.888−894
92. Magno, M.H.R., et al., Synthesis, degradation and biocompatibility of tyrosine-derived polycarbonate scaffolds. Journal of Materials Chemistry, 2010. 20(40).
93. Aluri, R., et al., Multistimuli-Responsive Amphiphilic Poly(ester-urethane)
Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells.
Biomacromolecules, 2018. 19(6).
94. Fukushima, K., et al., Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents. Biomacromolecules, 2017. 18(11): p. 3834-3843.
95. Blau, N., F.J. van Spronsen, and H.L. Levy, Phenylketonuria. The Lancet,
2010. 376(9750): p. 1417-1427.
96. Al Hafid, N. and J. Christodoulou, Phenylketonuria: a review of current and future treatments. Transl Pediatr, 2015. 4(4): p. 304-17.
97. Butler, J.S., et al., Tryptophan switch for a photoactivated platinum anticancer complex. J Am Chem Soc, 2012. 134(40): p. 16508-11.
98. Abdel-Magid, A.F., Targeting the Inhibition of Tryptophan 2,3-Dioxygenase
(TDO-2) for Cancer Treatment. ACS Med Chem Lett, 2017. 8(1): p. 11-13.
99. Qi, G., et al., Smart Plasmonic Nanozyme Enhances Combined Chemo-
photothermal Cancer Therapy and Reveals Tryptophan Metabolic Apoptotic Pathway.
Anal Chem, 2019. 91(19): p. 12203-12211.
100. Munoz-Rugeles, L., A. Galano, and J.R. Alvarez-Idaboy, The role of acid-
base equilibria in formal hydrogen transfer reactions: tryptophan radical repair by
uric
acid as a paradigmatic case. Phys Chem Chem Phys, 2017. 19(23): p. 15296-15309.
101. Ibsen, S., et al., A novel Doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharm Res, 2010. 27(9): p. 1848-60
102. Sauter, K.A., et al., Doxorubicin and daunorubicin induce processing and release of interleukin-1beta through activation of the NLRP3 inflammasome. Cancer Biol Ther, 2011. 11(12): p. 1008-16.
103. Garcia Daza, F.A. and A.D. Mackie, Low Critical Micelle Concentration Discrepancy between Theory and Experiment. J Phys Chem Lett, 2014. 5(11): p. 2027-32.
104. Oborna, J., et al., The effect of PLGA-PEG-PLGA modification on the sol-gel transition and degradation properties. Express Polymer Letters, 2016. 10(5): p. 361-372.
105. Yu, L., H. Zhang, and J. Ding, Effects of precipitate agents on temperature-responsive sol–gel transitions of PLGA–PEG–PLGA copolymers in water. Colloid and Polymer Science, 2010. 288(10-11): p. 1151-1159.
106. Oborna, J., et al., The effect of PLGA-PEG-PLGA modification on the sol-gel transition and degradation properties. Express Polymer Letters, 2016. 10(5): p. 361-372.
107. Moretton, A., et al., Selective mitochondrial DNA degradation following double-strand breaks. PLoS One, 2017. 12(4): p. e0176795.
108. Zhao, X., et al., Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int J Nanomedicine, 2015. 10: p. 257-70.
109. Chen, H., et al., Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics, 2013. 3(9): p. 633-49.
110. Gau, D., et al., Fluorescence Resonance Energy Transfer (FRET)-based Detection of Profilin-VASP Interaction. Cell Mol Bioeng, 2011. 4(1): p. 1-8.
111. Gau, D., et al., Fluorescence Resonance Energy Transfer (FRET)-based Detection of Profilin-VASP Interaction. Cell Mol Bioeng, 2011. 4(1): p. 1-8.

無法下載圖示 全文公開日期 2031/08/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE