簡易檢索 / 詳目顯示

研究生: 李彥宏
Yan-hung Lee
論文名稱: 基於非常態分配探討製程能力指標估計與比較分析之研究
Estimations and Comparisons for Process Capability Indices based on Non-normal Distributions
指導教授: 林希偉
Shi-woei Lin
吳建瑋
Chien-wei Wu
口試委員: 喻奉天
Vincent F. Yu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 製程能力指標非常態分配複式抽樣法信賴下界涵蓋率品質保證
外文關鍵詞: Process capability index, Non-normal distributions, Bootstrap approach, Lower confidence bound, Coverage rate, Quality assurance
相關次數: 點閱:375下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

製程能力指標(Process Capability Indices, PCIs)為製程產出提供一個數值的衡量方法,用來協助業界評估製程產出的品質水準,以及是否能夠符合消費者的要求。然而,傳統的製程能力指標大多需假設製程產出為常態分配,但實務上並非所有製程產出都能符合常態分配假設,因此在此情況下若使用常態假設的製程能力指標可能會導致錯估而造成誤判。為解決此缺失,許多學者紛紛提出非常態型的製程能力指標以用來評估製程產出不符合常態分配的情況。本研究首先整理出過去文獻中所提出的七種非常態型製程能力指標,包含指標Cjkp、Cs、Csm、Cpc、CNpk、Cpk(WV)及Cpk(WSD)。接著,在多種非常態分配(例如:Gamma、Weibull、Lognormal、Chi-square分配)利用兩種比較準則來探討這七種非常態製程能力指標的表現,藉由各種不同分配的參數設定,進而評選出較能適切反應製程能力的非常態製程能力指標(包含指標 Cpk(WSD)、Cpk(WV) 及 CNpk)。經由篩選後,進一步利用三種無母數的複式抽樣方法(Bootstrap resampling method)建構指標之信賴區間。並透過模擬方式計算其涵蓋率(Coverage rate, CR)以及信賴下界平均值(Average value of lower confidence bound),以比較及評估三種區間估計方法的表現。最後透過實例分析及探討以提供決策者在評估非常態製程之產出績效的參考依據。


Process capability indices (PCIs) are used to provide numerical measures on process performance and determine whether a production process is capable of producing products within a specified tolerance. Even cases of process data with normally distributed are very common in practical situations, cases of process data with non-normal distributions are also occurred in the manufacturing industry. Unfortunately, when the distribution of a process characteristic is non-normal, the actual product quality may be misrepresented if we measure the process performance by conventional PCIs and the practitioners might make incorrect decisions. In order to deal with this problem, many non-normal process capability indices have been developed. In this thesis, we first review seven non-normal PCIs including Cjkp, Cs, Csm, Cpc, CNpk, Cpk(WV) and Cpk(WSD) indices and compare their performance for measuring process capability under various non-normal distributions. The comparative rules include the concept of matched Cpk (MCpk) and the corresponding fraction of non-conforming items. The results indicate that three indices, Cpk(WSD), Cpk(WV) and CNpk, have the better achievement to evaluate process performance for non-normal distributions. Next, the nonparametric bootstrap resampling methods (SB, PB and BCPB methods) are applied to establish the confidence interval of these three non-normal capability indices under four non-normal distributions (Gamma, Weibull, Lognormal and Chi-square distributions). A simulation study is conducted to compare the accuracy of these three bootstrap methods in terms of coverage rate and the average value of lower confidence bound. Finally, an application example is presented for illustration.

誌謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3研究架構 3 第二章 文獻回顧與探討 6 2.1常態型製程能力指標 6 2.2非常態型製程能力指標 8 2.2.1指標 Cjkp 9 2.2.2指標 Cs 10 2.2.3指標 Csm 11 2.2.4指標 Cpc 12 2.2.5指標 CNp(u,v) 12 2.2.6指標 Cpk(WV) 14 2.2.7指標 Cpk(WSD) 15 2.3複式抽樣法 16 第三章 非常態型製程能力指標評選方法與結果 18 3.1比較準則 18 3.1.1相配指標 Cpk(Matched Cpk) 18 3.1.2製程不良率 19 3.2比較結果 20 3.2.1相配指標 Cpk(Matched Cpk) 20 3.2.2製程不良率 27 3.2.3綜合比較結果 34 第四章 研究分析與結果 36 4.1複式抽樣法信賴區間 36 4.2模擬環境設定 40 4.3模擬結果分析 43 4.3.1涵蓋率分析 43 4.3.2信賴下界平均值之分析 60 第五章 實例分析 70 第六章 結論與建議 74 參考文獻 76

1.Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. J. R. Statist. Soc. B, 26, 221-252.
2.Bissell, A. F. (1990). How reliable is your capability index? Applied Statistics, 39(3), 331-340.
3.Boyles, R. A. (1991). The Taguchi capability index. Journal of quality Technology, 23, 107-126.
4.Bai, D. S. and Choi, I. S. (1995). Xbar and R control charts for skewed populations. Journal of Quality Technology, 27, 120-131.
5.Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26.
6.Choobineh, F. and Ballard, J. L. (1987). Control-limits of QC Charts for skewed distributions using weighted–variance. IEEE Transactions Reliability, 36, 473-477.
7.Chang, Y. S. and Bai, D. S. (2001). Control charts for positively-skewed populations with weighted standard deviations. Quality and Reliability Engineering International, 17, 397-406.
8.Chang, Y. S., Choi, I. S. and Bai, D. S. (2002). Process capability indices for skewed populations. Quality and Reliability Engineering International, 18(5), 383-393.
9.Chan, L. K., Cheng, S. W. and Spiring, F. A. (1988). A new measure of process capability Cpm. Journal of Quality Technology, 20(3), 162-175.
10.Chou, Y. M., Owen, D. B., and Borrego, A. S. (1990). Lower confidence limits on process capability indices. Journal Quality Technology, 22, 223-229.
11.Chen, J. P. and Tong, L. I. (2003). Bootstrap confidence interval of difference between two process capability indices. The International Journal of Advanced Manufacturing Technology, 21(1), 249-256.
12.Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7(1), 1-26.
13.Efron, B. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife and cross-validation. American Statistician, 37, 36-48.
14.Efron, B. and Tibshirani, R. J. (1986). Bootstrap methods for standard errors, confidence interval, and other measures of statistical accuracy. Statistical Sciences, 1, 54-77.
15.Franklin, L.A. and Wasserman, G. S. (1991). Bootstrap confidence interval estimates of Cpk : an introduction. Communications in Statistics- Simulation and Computation, 20(1), 231-242.
16.Gunter, B. H. (1989a). The Use and Abuse of Cpk Part I. Quality Progress, January, 72-73.
17.Gunter, B. H. (1989b). The Use and Abuse of Cpk Part II. Quality Progress, March, 108-109.
18.Gunter, B. H. (1989c). The Use and Abuse of Cpk Part III. Quality Progress, May, 79-80.
19.Gunter, B. H. (1989d). The Use and Abuse of Cpk Part IV. Quality Progress, January, 86-87.
20.Gunter, B. H. (1991a). Bootstrapping: How to Make Something from Almost Nothing and Get Statistically Valid Answers. Part I: Brave New World. Quality and Reliability Engineering International, 24(12), 97-103.
21.Gunter, B. H. (1991b). Bootstrapping: How to Make Something from Almost Nothing and Get Statistically Valid Answers. Part II: The Confidence Game. Quality and Reliability Engineering International, 25(2), 83-86.
22.Gunter, B. H. (1991c). Bootstrapping: How to Make Something from Almost Nothing and Get Statistically Valid Answers. Part III: Examples and Enhancements. Quality and Reliability Engineering International, 25(4), 119-122.
23.Gunter, B. H. (1991d). Bootstrapping: How to Make Something from Almost Nothing and Get Statistically Valid Answers. Part IV: Bias-Corrected Intervals. Quality and Reliability Engineering International, 25(6), 79-83.
24.Johnson, N. L. (1949). System of frequency curves generated by methods of translation. Biometrika, 36, 149-176.
25.Juran, J. M. (1974). Quality control Handbook, 3rd ed., McGraw-Hill, New Work, USA.
26.Johnson, N. L., Kotz, S. and Pearn, W. L. (1994). Flexible process capability indices. Pakistan Journal of Statistics, 10(1), 23-31.
27.Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.
28.Luceno, A. (1996). A process capability index with reliable confidence intervals. Communications in Statistics: Simulation and Computation, 25(1), 235-245.
29.Leiva, V., Marchant, C., Saulo, H., Aslamc, M., and Rojas, F. (2014). Capability indices for Birnbaum–Saunders processes applied to electronic and food industries. Journal of Applied Statistics, 41(9), 1881-1902.
30.Mooney, C. Z. and Duval, R. (1993). Bootstrapping: A nonparametric approach to statistical inference. Quantitative Applications in the Social Sciences, 7, 73.
31.Nahar, P. C, Hubble, N. F. and Zimmer, L. S. (2001). Assessment of a capability
32.Pearn, W. L. and Chen, K. S. (1997). Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing. Microelectronics and Reliability, 37(12), 1853-1858.
33.Pearn, W. L., Kotz, S. and Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231.
34.Somerville, S. E. and Montgomery, D.C. (1996). Process capability indices and non-normal distributions. Quality Engineering, 305-316.
35.Tong, L. I., Chen, H. T., and Tai, Y. F. (2008). Constructing BCa bootstrap confidence interval for the difference between two non-normal process capability indices CNpmk. Quality Engineering, 20, 209-220.
36.Vannman, K. and Kotz, S. (1995). A superstructure of capability indices - distributional properties and implications. Scandinavian Journal of Statistics, 22, 477-491.
37.Wright, P. A. (1995). A process capability index sensitive to skewness. Journal of Statistical Computation and Simulation, 52, 195-203.
38.Wu, C. W., Pearn, W. L., and Chang, C. S. (2007). Accuracy analysis of the percentile method for estimating non normal manufacturing quality. Communication in Statistics-Simulation and Computation, 36, 657-697.
39.Wu, H-H., Swain, J. J., Farrington, P. A. and Messimer, S. L. (1999). A weighted variance capability index for general non-normal processes. Quality and Reliability Engineering International, 15, 397- 402.
40.Wu, C. W., Shu, M. H., Pearn, W. L. and Liu, K. H. (2008). Bootstrap approach for supplier selection based on production yield. International Journal of Production Research, 46(18), 5211-5230.
41.Young, G. A. (1994). Bootstrap: More than a Stab in the Dark? Statistical Science, 9(3), 382-395.

無法下載圖示 全文公開日期 2019/06/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE