簡易檢索 / 詳目顯示

研究生: 徐睿伯
JUI-PO HSU
論文名稱: 雙組輸出無線能量傳輸系統之研製
Study and Implementation of Dual-Output Wireless Power Transfer System
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 楊宗銘
Chung-Ming Young
邱煌仁
Huang-Jen Chiu
劉宇晨
Yu-Chen Liu
黃仁宏
Peter Huang
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 119
中文關鍵詞: 串聯諧振耦合電感虛功率諧振轉換器多組負載交互耦合之無線能量傳輸
外文關鍵詞: series resonant, coupled inductor, virtual power, resonant converter, multiple load-coupled wireless power transfer
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文重點研究了具有雙輸出的無線充電應用,並探討克服複雜發電方式。串聯無線功率傳輸(WPT)系統架構用於分析,設計和實現。首先,簡要介紹了WPT的基本原理,並對WPT應用中弱耦合線圈的等效電路模型進行了綜述。利用數學理論分析了兩個接收線圈之間的相互作用耦合對整個系統的影響,計算了發送端的虛阻抗為零的工作頻率點。本文提出了一種能夠保證雙輸出WPT系統在設定的耦合係數變化範圍,負載範圍和允許工作頻率範圍內正常工作的設計方法,可以作為實驗研究的依據最後以實作電路並完成可以使兩組接收器的輸出同時達到30 W的輸出,發送端與接收端垂直距離10 mm,而兩組接收線圈之間的距離則分別三種不同的狀況: 0 mm、20 mm、40 mm,最終在各項測試條件都能夠讓電路擁有最小的虛功率。


This thesis focuses on a wireless charging application with dual outputs and discusses the challenges with complex power generation. The series wireless power transfer (WPT) system architecture is used for analysis, design and implementation. Firstly, a brief introduction of the basic principles of WPT is given and the equivalent circuit models of loosely-coupled coils for WPT application are reviewed. The influence of the interaction coupling between the two two receiver coils on the whole system is analyzed using mathematical theory to calculate the operating frequency point at which the reactive impedance of the transmitter is zero. A design method that can guarantee normal operation of the dual-output WPT system under given coupling coefficient variation range, load range and allowed operating frequency range is proposed in this thesis, and can be used as a basis for experimental research. Finally, the circuit can be implemented and the output of the two sets of receivers can reach 30 W at the same time. The vertical distance between the transmitter coil and receiver coil is 10 mm, and the distance between two receiver coils has three different cases of 0 mm, 20 mm, and 40 mm. Finally, in each test condition, the circuit minimizes the reactiver power.

摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖索引 vii 表索引 xi 第一章 緒論 1 1.1研究動機與目的 1 1.2論文內容大綱 4 第二章 無線能量傳輸系統之等效模型分析 6 2.1串聯諧振式無線能量傳輸系統基本介紹 6 2.1.1串聯諧振電路種類 7 2.1.2基本波近似法 8 2.2一對一串聯諧振式之耦合電感模型分析 11 2.2.1一對一串聯諧振式耦合電感模型推導 11 2.2.2一對一串聯諧振式耦合電感原理分析 13 2.2.3一對一串聯諧振式耦合電感矩陣表示式 16 2.3一對二串聯諧振式之耦合電感模型推導 17 2.3.1一對二串聯諧振式耦合電感模型推導 18 2.3.2一對二串聯諧振式耦合電感原理分析 22 2.3.3實際零相位角頻率之輸入等效阻抗分析 30 第三章 線圈設計及擺放位置分析 33 3.1發送線圈與接收線圈設計 33 3.1.1發送線圈設計分析 35 3.1.2接收線圈設計分析 37 3.1.3實體線圈 40 3.2發送線圈與接收線圈擺放位置之耦合分析 41 3.2.1一對一線圈水平擺放位置分析 41 3.2.2一對二線圈水平擺放位置分析 47 第四章 無線能量傳輸之變頻相位修正分析 49 4.1變頻分析之測試規格 49 4.2零相位之變頻分析 51 4.2.1基於兩組接收線圈間距0mm錯相分析 52 4.2.2基於兩組接收線圈間距20mm錯相分析 55 4.2.3基於兩組接收線圈間距40mm錯相分析 58 4.2.4變頻特性分析總結 61 4.3零電壓切換於修正相位後之分析 62 4.3.1輔助零電壓切換電路 64 4.3.2輔助零電壓切換元件設計 71 第五章 實驗量測結果 73 5.1測試規格 73 5.2實測電路設計考量 74 5.2.1功率開關與整流二極體選用 74 5.2.1控制電路與驅動IC 74 5.2.2諧振槽匹配 76 5.2.4輔助零電壓切換電路元件參數 77 5.2.5實體電路元件參數總表 77 5.3實驗數據與波形呈現 80 5.4實驗結果 90 第六章 結論以及未來展望 97 6.1結論 97 6.2未來展望 97 參考文獻 99

[1] P. Hu, Wireless/Contactless Power Supply: - Inductively Coupled Resonant Converter Solutions. VDM-Verlag, 2009.
[2] Mayordomo, T. Dräger, P. Spies, J. Bernhard and A. Pflaum, "An Overview of Technical Challenges and Advances of Inductive Wireless Power Transmission," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1302-1311, June 2013.
[3] F. Musavi and W. Eberle, "Overview of Wireless Power Transfer Technologies for Electric Vehicle Battery Charging," in IET Power Electronics, vol. 7, no. 1, pp. 60-66, January 2014.
[4] C. Qiu, K. T. Chau, C. Liu and C. C. Chan, "Overview Of Wireless Power Transfer for Electric Vehicle Charging," Electric Vehicle Symposium and Exhibition (EVS27), 2013 World, Barcelona, 2013, pp. 1-9.
[5] G. A. Covic and J. T. Boys, "Inductive Power Transfer," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1276-1289, June 2013
[6] J. H. Kim et al., "Development of 1-MW Inductive Power Transfer System for a High-Speed Train," in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6242-6250, Oct. 2015
[7] M. P. Theodoridis, "Effective Capacitive Power Transfer," in IEEE Transactions on Power Electronics, vol. 27, no. 12, pp. 4906-4913, Dec. 2012.
[8] C. Y. Xia, C. W. Li and J. Zhang, "Analysis of Power Transfer Characteristic of Capacitive Power Transfer System And Inductively Coupled Power Transfer System," Mechatronic Science, Electric Engineering and Computer (MEC), 2011 International Conference on, Jilin, 2011, pp. 1281-1285.
[9] H. Funato, H. Kobayashi and T. Kitabayashi, "Analysis of Transfer Power of Capacitive Power Transfer System," Power Electronics and Drive Systems (PEDS), 2013 IEEE 10th International Conference on, Kitakyushu, 2013, pp. 1015-1020.
[10] S. Goma .(Nov 2012)."Capacitive Coupling Powers Transmission Module",Asia Electronics Industry (AEI) [Online], November 2012,pp.20-23.Available:http://www.murata.com/~/media/webrenewal/about/newsroom/tech/power/wptm/ta1291.ashx [March,17.2016]
[11] C. S. Wang, G. A. Covic and O. H. Stielau, "Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems," in IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148-157, Feb. 2004.
[12] S. Lukic and Z. Pantic, "Cutting the Cord: Static and Dynamic Inductive Wireless Charging of Electric Vehicles," in IEEE Electrification Magazine, vol. 1, no. 1, pp. 57-64, Sept. 2013.
[13] C. S. Wang, O. H. Stielau and G. A. Covic, "Design Considerations For a Contactless Electric Vehicle Battery Charger," in IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[14] Pevere, R. Petrella, C. C. Mi and Shijie Zhou, "Design of a high efficiency 22 kW wireless power transfer system for EVs fast contactless charging stations," Electric Vehicle Conference (IEVC), 2014 IEEE International, Florence, 2014, pp. 1-7.
[15] S. Li and C. C. Mi, "Wireless Power Transfer for Electric Vehicle Applications," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, March 2015.
[16] C. Zheng et al., "High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 65-74, March 2015.
[17] R. Chen et al., "Analysis and Parameters Optimization of a Contactless IPT System for EV Charger," Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, Fort Worth, TX, 2014, pp. 1654-1661.
[18] G. Buja, M. Bertoluzzo and K. N. Mude, "Design and Experimentation of WPT Charger for Electric City Car," in IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, Dec. 2015
[19] M. Kazimierczuk and D. Czarkowski, Resonant Power Converters, Wiley, 1995.
[20] M. Kline. "Capacitive Power Transfer" [Online], Electrical Engineering and Computer Sciences, University of California at Berkeley, CA, 2010.Available:http://digitalassets.lib.berkeley.edu/
techreports/ucb/text/EECS-2010-155.pdf[March,17 2016]
[21] Moradewicz and M. P. Kazmierkowski, "Contactless Energy Transfer System With FPGA-Controlled Resonant Converter," in IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 3181-3190, Sept. 2010.
[22] Y. H. Kim and K. H. Jin, "Design and Implementation of a Rectangular-Type Contactless Transformer," in IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5380-5384, Dec. 2011.
[23] M. Ryu, H. Cha, Y. Park and J. Back, "Analysis of The Contactless Power Transfer System Using Modelling and Analysis of The Contactless Transformer," Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, Raleigh, NC, 2005, pp. 7
[24] D. Thenathayalan and J. H. Park, "Wide-Air-Gap Transformer Model for the Design-Oriented Analysis of Contactless Power Converters," in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6345-6359, Oct. 2015.
[25] Y. Kawaguchi and M. Yamada, "Experimental Evaluation of a 3-Kw High-Efficiency Inductive Contactless Power Transfer (IPCT) System For Electric Vehicles," 2014 16th European Conference on Power Electronics and Applications (EPE'14-ECCE Europe),26-28 Aug. 2014
[26] eGaN FET based 6.78MHz Differential-Mode ZVS Class D AirFuel™ Class 4 Wireless Power Amplifier Michael de Rooij, Yuanzhe Zhang, Efficient Power Conversion, 909 N. Sepulveda Blvd.ste230,El Segundo CA, 90245, U.S.A. (zvs tank)
[27] A4WP PTU Resonator Class 3 Design – Spiral Type 210-140 Series (PTU 3-0001), A4WP standard document RES-14-0008 Ver. 1.2, June 30, 2014.
[28] M. A. de Rooij, “Performance Comparison for A4WP Class-3 Wireless Power Compliance between eGaN® FET and MOSFET in a ZVS Class D Amplifier,” International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM - Europe), May 2015. (zvs tank)
[29] R. Tseng, B. von Novak, S. Shevde and K. A. Grajski, “Introduction to the Alliance for Wireless Power Loosely-Coupled Wireless Power Transfer System Specification Version 1.0,” IEEE Wireless Power Transfer Conference 2013, Technologies, Systems and Applications, May 15-16, 2013.
[30] A. Lidow, “How to GaN: Stable and Efficient ZVS Class D Wireless Energy Transfer at 6.78 MHz,” EEWeb: Pulse Magazine, Issue 126, pp. 24 – 31, July 2014.(zvs tank)
[31] “ISM band,” Wikipedia, January 2014, http://en.wikipedia.org/wiki/ISM_band
[32] “Wireless Power Consortium“ Wikipedia, December 2008 https://en.wikipedia.org/wiki/Qi_(standard)
[33] “Power Matters Alliance Standard’’ Wikipedia, March 2012https://en.wikipedia.org/wiki/Power_Matters_Alliance
[34] X. Dai, X. Li and Y. Li, "Cross-coupling coefficient estimation between multi-receivers in WPT system," 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, 2017, pp. 1-4. doi: 10.1109/WoW.2017.7959388
[35] M. Fu, T. Zhang, X. Zhu, P. C. Luk and C. Ma, "Compensation of Cross Coupling in Multiple-Receiver Wireless Power Transfer Systems," in IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 474-482, April 2016.doi: 10.1109/TII.2016.2516906
[36] K. K. Ean, B. T. Chuan, T. Imura and Y. Hori, "Impedance matching and power division algorithm considering cross coupling for wireless power transfer via magnetic resonance," Intelec 2012, Scottsdale, AZ, 2012, pp. 1-5. doi: 10.1109/INTLEC.2012.6374468
[37] Weikun Cai, Dianguang Ma *, Houjun Tang, Xiaoyang Lai *, Xin Liu and Longzhao Sun Highly " Efficient Target Power Control for Two-Receiver Wireless Power Transfer Systems" . Received: 19 August 2018; Accepted: 8 October 2018; Published: 11 October 2018
[38] D. Cui, T. Imura and Y. Hori, "Cross coupling cancellation for all frequencies in multiple-receiver wireless power transfer systems," 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, 2016, pp. 48-49.
[39] Y. Gao, Z. T. H. Tse and A. Ginart, "Analytical method for mutual inductance and optimum frequency calculation in a series-series compensated inductive power transfer system," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 3720-3722. doi: 10.1109/APEC.2017.7931233
[40] Joel Turchi, Dhaval Dalal, Patrick Wang, and Laurent Jenck, Power Factor Correction Handbook, Rev. 5, ON Semiconductor, 2014
[41] Math H. J. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions, Wiley-IEEE Press, 1999.
[42] 蔡富斌,具同步整流之數位控制半橋串聯諧振轉換器之研製,國立臺灣科技大學碩士論文,2012年
[43] 彭譽耀,交錯式半橋串聯諧振轉換器研製,國立臺灣科技大學碩士論文,2012年
[44] 謝昕哲,雙向串聯諧振式無線能量傳輸系統之研製,國立臺灣科技大學碩士論文,2016年
[45] Wireless Power - Efficient Power Conversion “EPC9128-16W Class 3 Wireless Power Kit”
https://epc-co.com/epc/Applications/WirelessPower.aspx

無法下載圖示 全文公開日期 2024/08/12 (校內網路)
全文公開日期 2024/08/12 (校外網路)
全文公開日期 2024/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE