簡易檢索 / 詳目顯示

研究生: 賴宜均
Yi-Jun Lai
論文名稱: 基於⽣物啟發式演算法並考慮電池⽼化模型的電能管理系統
Energy Management System Based on Bio-inspired Algorithms Considering Battery Aging Model
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
邱煌仁
Huang-Jen Chiu
王順忠
Shun-Chung Wang
鄭于珊
Yu-Shan Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 142
中文關鍵詞: 微電網系統混合式儲能系統電池老化模型電能管理與調度
外文關鍵詞: Microgrid System, Hybrid Energy Storage System, Battery Aging Model, Power Management and Dispatch
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微電網系統可整合系統中所有設備,透過對系統進行電力調度,有效分配系統設備於各時段適當的充放電量。本論文提出一種微電網系統架構,系統中包含市電、太陽能發電系統、風力發電機、電池儲能系統、飛輪儲能系統和負載,且僅考慮系統操作在併網模式下。本文將探討系統1:單一電池儲能和系統2:電池-飛輪混合儲能等兩種架構間運轉成本的差異。系統的最佳化目標定義為年運轉總成本,其中為真實考量電池隨使用情況不同所產生的更換成本,本論文亦引入實際電池老化模型,直接將電池老化的狀況等效轉換成其更換成本。
本論文使用最佳化方法對系統進行求解,且為驗證所使用方法的成效,將利用相同的MATLAB模擬平台對本文所提出的流程圖法以及9種曾被使用在電力調度相關研究的方法進行模擬,並對模擬結果中表現最優的方法—人工蜂群演算法加以改良。為避免演算法的隨機性造成模擬結果不公正,本論文選用3項統計方法—弗里德曼檢驗、單因子方差分析以及魏克生符號等級檢定對11種方法的模擬結果進行驗證分析。模擬結果指出,使用混合儲能可有效改善系統年運轉總成本,其中表現最佳者為所提出的改良人工蜂群演算法(Modified Artificial Bee Colony, MABC),其改善率為5.05%。根據弗里德曼檢驗結果,MABC之表現為所有方法中的第一名;根據單因子方差分析結果,MABC的平均值在系統1中會與6種比較方法存有顯著性差異,而在系統2中則會與7種比較方法存有顯著性差異;根據魏克生符號等級檢定的統計結果,MABC方法在系統1中顯著優於6種方法,而在系統2中則顯著優於其它10種比較方法。


The micro-grid system can integrate all the equipment in the system, it can effectively allocate the appropriate charging and discharging capacity of the system equipment at each time period. This paper proposes a microgrid system architecture, which includes mains power, solar power generation systems, wind turbines, battery energy storage systems, flywheel energy storage systems and loads, and only considers the system operating in grid-connected mode. This article will explore the difference in operating costs between the two architectures of system 1: single battery energy storage and system 2: battery-flywheel hybrid energy storage. The optimization objective of the system is defined as the total annual operating cost. This paper also introduces the actual battery aging model to directly convert the battery aging status into its replacement cost equivalently.
In this paper, MATLAB simulation platform will be used to carry out the proposed flow chart method and 9 optimization methods that have been used in power dispatching related research to solve the system. In order to avoid the unfairness of the simulation results caused by the randomness of the algorithm, this paper uses three statistical methods—Friedman test, ANOVA and Wilcoxon signed-rank test to verify and analyze the simulation results of 11 methods. The simulation results indicate that the use of hybrid energy storage can effectively improve the total annual operating cost of the system, and the proposed modified artificial bee colony algorithm has the best performance, with an improvement rate of 5.05%. According to the results of Friedman test, the performance of MABC ranks first among all methods. According to the results of ANOVA, the average value of MABC significantly outperforms other 6 and 7 methods in system 1 and system 2, respectively. According to the statistical results of Wilcoxon signed-rank test, the MABC method is significantly better than other 6 and 10 methods in system 1 and system 2, respectively.

摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XI 符號表 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 1 1.3 研究動機與目標 3 1.4 論文大綱 3 第二章 微電網系統介紹與發展 5 2.1 微電網系統 5 2.2 再生能源 7 2.2.1 太陽能發電 7 2.2.2 風力發電 10 2.3 儲能設備 14 2.3.1 飛輪儲能 14 2.3.2 電池儲能 16 2.4 負載 18 2.5 電池老化模型 19 2.5.1 電池儲存老化模型 19 2.5.2 電池循環老化模型 21 2.5.3 本文使用之電池老化模型 23 2.5.3.1 本文使用之儲存老化模型 23 2.5.3.2 本文使用之循環老化模型 25 第三章 微電網系統電力調度模型 27 3.1 微電網系統及其設備容量 27 3.2 電力調度策略 28 3.3 系統目標函數 32 3.3.1 市電購售電成本 32 3.3.1.1 購電成本 33 3.3.1.2 售電成本 34 3.3.2 再生能源成本 35 3.3.3 儲能設備成本 35 3.3.3.1 電池維護運轉成本 36 3.3.3.2 飛輪維護運轉成本 39 第四章 最佳化演算法 41 4.1 流程圖法 41 4.1.1 計算電池荷電狀態 43 4.1.2 情境1 47 4.1.3 情境2 48 4.1.4 計算飛輪荷電狀態 50 4.2 粒子群演算法 52 4.3 遺傳演算法 56 4.4 人工蜂群演算法 58 4.5 螢火蟲演算法 62 4.6 布穀鳥演算法 64 4.7 蝙蝠演算法 67 4.8 灰狼演算法 70 4.9 蜻蜓演算法 74 4.10 郊狼演算法 80 第五章 模擬結果與分析 85 5.1 模擬結果 85 5.2 演算法改良 89 5.2.1 混沌地圖[40] 89 5.2.2 雷興貝格原則[41] 90 5.2.3 改良人工蜂群演算法 90 5.3 統計分析 93 5.3.1 弗里德曼檢驗 97 5.3.2 單因子方差分析 99 5.3.3 魏克生符號等級檢定 106 第六章 結論與未來展望 110 6.1 結論 110 6.2 未來展望 111 參考文獻 112

[1] J. Wu, J. Thompson, H. Zhang, R. V. Prasad and S. Guo, "Green communications and computing networks [Series Editorial]," in IEEE Communications Magazine, vol. 54, no. 5, pp. 106-107, May 2016.
[2] L. Peng, X. Jinyu, W. Jiawei, C. Zhengxi and Z. Shining, "Development of global wind and solar resource to cope with global climate change," IEEE Sustainable Power and Energy Conference (iSPEC), pp. 986-996, 2021.
[3] UNFCCC COP 27, Available at: https://unfccc.int/event/cop-27
[4] Y. S. Cheng, M. T. Chuang, Y. H. Liu, S. C. Wang, Z. Z. Yang, "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, vol. 88, pp. 58-72, 2016.
[5] L. Barelli, G. Bidini, F. Bonucci, L. Castellini, A. Fratini, F. Gallorini, A. Zuccari, "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, vol. 173, pp. 937-950, 2019.
[6] A. Naderipour, Z. Abdul-Malek, M. Zahedi Vahid, Z. Mirzaei Seifabad, M. Hajivand and S. Arabi-Nowdeh, "Optimal, reliable and cost-effective framework of photovoltaic-wind-battery energy system design considering outage concept using grey wolf optimizer algorithm—case study for Iran," in IEEE Access, vol. 7, pp. 182611-182623, 2019.
[7] 康嘉興,「應用粒子群演算法於微型電網電力調度之研究」,國立臺灣科技大學電機工程系碩士學位論文,民國101年10月。
[8] A. Kashefi Kaviani, G.H. Riahy, SH.M. Kouhsari, "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, vol. 34, pp. 2380-2390, 2009.
[9] S. Ferahtia, H. Rezk, A. Djerioui, A. Houari, A. Fathy, M. A. Abdelkareem, A.G. Olabi, "Optimal heuristic economic management strategy for microgrids based PEM fuel cells, " International Journal of Hydrogen Energy, 2022.
[10] A. U. Rehman et al., "An optimal power usage scheduling in smart grid integrated with renewable energy sources for energy management," in IEEE Access, vol. 9, pp. 84619-84638, 2021.
[11] J. Ul Ain Binte Wasif Ali, S. A. A. Kazmi, A. Altamimi, Z. A. Khan, O. Alrumayh and M. M. Malik, "Smart energy management in virtual power plant paradigm with a new improved multilevel optimization based approach," in IEEE Access, vol. 10, pp. 50062-50077, 2022.
[12] A. Al-Duais, M. Osman, M. H. Shullar and M. A. Abido, "Optimal real-time pricing-based scheduling in home energy management system using genetic algorithms,"in 4th IEEE International Conference on Renewable Energy and Power Engineering (REPE), pp. 243-248, 2021.
[13] S. Y. Chen and C. H. Chang, "Optimal power flows control for home energy management with renewable energy and energy storage systems," in IEEE Transactions on Energy Conversion, 2022.
[14] S. Ali et al., "Demand response program for efficient demand-side management in smart grid considering renewable energy sources," in IEEE Access, vol. 10, pp. 53832-53853, 2022.
[15] N. Javaid et al., "An intelligent load management system with renewable energy integration for smart homes," in IEEE Access, vol. 5, pp. 13587-13600, 2017.
[16] M. Vosoogh, M. Rashidinejad, A. Abdollahi and M. Ghaseminezhad, "An intelligent day ahead energy management framework for networked microgrids considering high penetration of electric vehicles," in IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 667-677, Jan. 2021.
[17] A. Kumar, M. Alaraj, M. Rizwan and U. Nangia, "Novel AI based energy management system for smart grid with RES integration," in IEEE Access, vol. 9, pp. 162530-162542, 2021.
[18] J. Qi and D. Wu, "Green energy management of the energy internet based on service composition quality," in IEEE Access, vol. 6, pp. 15723-15732, 2018.
[19] S. Ali, T. N. Malik and A. Raza, "Risk-Averse home energy management system," in IEEE Access, vol. 8, pp. 91779-91798, 2020.
[20] T. Eftimov, G. Petelin, P. Korošec, "DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms," Applied Soft Computing, vol. 87, 2020.
[21] M. H. Saeed, W. Fangzong, B. A. Kalwar and S. Iqbal, "A review on microgrids’ challenges & perspectives," in IEEE Access, vol. 9, pp. 166502-166517, 2021.
[22] Integration of Battery Energy Storage Systems in Distribution Grids, Available at: https://www.tudelft.nl/innovatie-impact/home-of-innovation/innovation-projects/projects-2022/flexbat
[23] 觀測資料查詢,網址:https://e-service.cwb.gov.tw/HistoryDataQuery/
[24] 鄭啟明、曾威仁,標準地況自然風場實場監測與特性分析,內政部建築研究所委託研究報告,民國98年12月。
[25] 林彥廷、鄭恩凱、林冠廷、黃金城,可變槳距之水平軸風力發電機運轉分析,臺灣能源月刊5卷3期,第199-215頁,民國107年9月。
[26] B. Becker, M. E. Gil Bardaji, J. M. Durand, P. Clerens, M. Noe, "European energy storage technology development roadmap," EASE/EERA, 2017.
[27] B. T. Merritt, R. F. Post, G. R. Dreifuerst, D. A. Bender, "Halbach array motor/generators a novel generalized electric machine," Lawrence Livermore National Laboratory, United States, 1994.
[28] N. Cinay, T. Häring, A. Rosin, T. Korõtko, R. Ahmadiahangar and H. Biechl, "Lifetime-oriented control strategies for hybrid energy storage systems in an islanded microgrid," in 22nd IEEE International Conference on Industrial Technology (ICIT), pp. 1267-1272, 2021.
[29] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, R. Villafáfila-Robles, "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, vol. 16, pp. 2154-2171, 2012.
[30] Molicel Inc., INR21700-P42B datasheet, 2021.
[31] IEEE PES Intelligent Systems Subcommittee Open Data Sets, Available at: https://site.ieee.org/pes-iss/data-sets/
[32] D. I. Stroe, "Lifetime models for lithium ion batteries used in virtual power plants," Doctor Dissertation, Department of Energy Technology, Aalborg University, 2014.
[33] 台灣電力股份有限公司,網址:https://www.taipower.com.tw/
[34] 經濟部能源局,網址:https://www.moeaboe.gov.tw/
[35] T.R. Ayodele, A.S. Ogunjuyigbe, N.O. Oyelowo, "Hybridisation of battery/flywheel energy storage system to improve ageing of lead-acid batteries in PV-powered applications," International Journal of Sustainable Engineering, vol. 13, pp. 337-359, 2020.
[36] P. Roy, J. He and Y. Liao, "Cost minimization of battery-supercapacitor hybrid energy sstorage for hourly dispatching wind-solar hybrid power system," in IEEE Access, vol. 8, pp. 210099-210115, 2020.
[37] A. Khiareddine, O. Gam and M. F. Mimouni, "Techno-economic analysis of the lithium-ion and lead-acid battery in Photovoltaic pumping system," in 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 417-422, 2019.
[38] S. Mirjalili, S. M. Mirjalili, A. Lewis, "Grey wolf optimizer," Advances in Engineering Software, vol. 69, pp. 46-61, 2014.
[39] S. Mirjalili, "Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems," Neural Comput & Applic, vol. 27, pp. 1053-1073, 2016.
[40] W. F. Gao, S. Y. Liu, "A modified artificial bee colony algorithm," Computers & Operations Research, vol. 39, pp. 687-697, 2012.
[41] B. Akay, D. Karaboga, "A modified Artificial Bee Colony algorithm for real-parameter optimization," Information Sciences, vol. 192, pp. 120-142, 2012.
[42] T. Eftimov, P. Korošec, "A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space," Information Sciences, vol. 489, pp. 255-273, 2019.
[43] S. A. Amanchi, "Applied nonparametric statistical tests to compare evolutionary and swarm intelligence approaches," Master Dissertation, Department of Computer Science, North Dakota State University of Agriculture and Applied Science, 2014.

無法下載圖示 全文公開日期 2028/02/06 (校內網路)
全文公開日期 2028/02/06 (校外網路)
全文公開日期 2028/02/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE