簡易檢索 / 詳目顯示

研究生: 李臨恩
Lin-En Lee
論文名稱: 從醱酵液中回收琥珀酸的製程研究
Study of the process for recovering Succinic-acid from fermentation broths
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 李豪業
Hao-Yeh Lee
錢義隆
I-Lung Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 104
中文關鍵詞: 琥珀酸回收
外文關鍵詞: Succinic acid broths
相關次數: 點閱:193下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

琥珀酸是目前工業用途上相當具有前景的一項商品,於民生的應用亦非常廣泛。目前有許多研究提出不同的琥珀酸回收方法,像是沉澱、萃取、離子交換及蒸餾等,但無法完全處理廢液與能源消耗的成本問題(回收琥珀酸占整個製程成本的50%~80%),成了製程的一個難題,故未能有完整的工業程序應用於工廠製程。本研究係探討回收琥珀酸的製程,由琥珀酸醱酵液與乙醇反應後生成琥珀酸二乙酯,再應用乙二醇分離乙醇與水,將此流程進行程序設計與控制。首先尋找適合的熱力學及動力學參數,應用Aspen Plus v8.4進行穩態模擬,再進行程序設計,以最小化年度總成本(TAC)為目標,提出系統之最適化設計,分別討論反應蒸餾塔及分離蒸餾塔兩系統之設計概念與最適化結果,進而提出整廠的流程設計,並將乙醇與乙二醇之反應物回收利用。最後,探討整廠製程之控制策略,利用Aspen Dynamic進行動態模擬及控制。控制策略方面,使用基本的控制環路包括液位、溫度、流量、壓力控制器,並且利用敏感度分析找出每一個操作單元最適合的溫度控制點,分別給予每個蒸餾塔之塔頂及塔底的控制,接著設定進料量增減及進料組成改變進行干擾,找到一個控制策略能使整個系統在干擾下快速回穩,並能保持產物的純度。


In this research, we are probe about recovery of succinic acid from fermentation broths with process design and control. Succinic acid is extensively applies in industry and our daily lives, which is one of the most promising commodities in the chemical industry. However, the problem of manufacturing succinic acid does always exist. The recovery of succinic acid process takes up about 50% to 80% of processing cost. Many have attempted to improve and reduce separation steps, but up to now there is not a successful technology scaled up to industrial production. Despite the fact that several separation processes have been proposed to overcome this problem (precipitation, ion exchange resins, membranes, reactive extraction, and liquid-liquid extraction), none addresses the major limit of large energy and material requirements as well as waste generation.
First of all, suitable thermodynamic and kinetic model are chosen to describe this process and perform the steady-state simulation by Aspen Plus. The system in this process is a reversible reaction and seeking out the optimum goal is obtained by minimizing the Total Annual Cost (TAC). After two optimum designs which are about reactive distillation column and separate distillation column are obtained, we connect each unit into a plant-wide process and recycle the un-reacted reactants. Then, we change the feed location to look for the optimum process.
After that, we will discuss the dynamic simulation and control of the plant-wide process by Aspen Dynamic. A simple control strategy including level, temperature, pressure and flow control has been brought forward, and the sensitivity analysis is performed to find the suitable control of each unit. With the interference by adjusting the feed flow rate and feed composition, the proposed control strategy works effectively and holds the purity of the product.

誌謝 1 摘要 II 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 琥珀酸介紹 2 1.2.2 琥珀酸二乙酯介紹 2 1.2.3 酯化反應實驗簡易分析 3 1.2.4 模型取樣 5 1.3 研究動機 7 1.4 組織章節 8 第二章 熱力學模擬 9 2.1前言 9 2.2 熱力學模式建立與參數 9 2.2.1 成分建立 10 2.2.2 熱力學模型 11 2.3 動力學模式建立參數 18 第三章 穩態程序設計與最適化 26 3.1 前言 26 3.2 琥珀酸二乙酯製程之流程設計 26 3.2.1 以反應蒸餾系統進行反應器設計 26 3.2.2 以蒸餾系統提高產品濃度之反應器設計 27 3.2.3 分離多餘成分之蒸餾系統設計 28 3.2.4 加入共沸物,回收乙醇之反應器設計 29 3.2.5 回收共沸物之反應器設計 33 3.3 琥珀酸二乙酯製程最適化 34 3.3.1 目標函數與整廠流程最適化 34 3.3.2 反應蒸餾塔最適化 36 3.3.3 產品塔最適化 43 3.3.4 乙醚分離塔最適化 49 3.3.5 乙醇回收塔最適化 54 3.3.6 乙二醇回收塔最適化 61 第四章 動態模擬及控制 68 4.1 前言 68 4.2 敏感度分析 68 4.3 琥珀酸二乙酯整廠製程之控制架構 75 4.4 干擾排除 78 第五章 結論 94 參考文獻 96 附錄A 計算年度總成本使用之公式 101

[1] Álvarez, V. H., Mattedi, S., Iglesias, M., Gonzalez-Olmos, R., & Resa, J. M. (2011). Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa. Physics and Chemistry of Liquids, 49(1), 52-71.

[2] Borisova, I. A., Erlykina, M. E. Deposited Doc., (1982). VINITI, 308, 308-82.

[3] Bonauguri, E.; Carpani, Z.; Dall'Orto, D. (1956). Chim. Ind. (Milan), 38, 768.

[4] Dalmolin, I., Skovroinski, E., Biasi, A., Corazza, M. L., Dariva, C., & Oliveira, J. V. (2006). Solubility of carbon dioxide in binary and ternary mixtures with ethanol and water. Fluid Phase Equilibria, 245(2), 193-200.

[5] Gomis, V., Font, A., & Saquete, M. D. (2008). Homogeneity of the water+ ethanol+ toluene azeotrope at 101.3 kPa. Fluid Phase Equilibria, 266(1), 8-13.

[6] Gonzalez, C., & Van Ness, H. C. (1983). Excess thermodynamic functions for ternary systems. 9. Total-pressure data and GE for water/ethylene glycol/ethanol at 50. degree. C. Journal Of Chemical And Engineering Data,28(4), 410-412.

[7] Gonzalez, C.; Van Ness, H. C. Int. DATA Ser., (1983). Sel. Data Mixtures, 11(2), 87-98.
[8] Gordon, A. R., & Hornibrook, W. J. (1946). Liquid-vapour equilibrium for the system ethanol-diethyl-ether. Canadian Journal of Research, 24(5), 263-267.

[9] Horstmann, S., Gardeler, H., Wilken, M., Fischer, K., & Gmehling, J. (2004). Isothermal vapor-liquid equilibrium and excess enthalpy data for the binary systems water+ 1, 2-ethanediol and propene+ acetophenone. Journal of Chemical & Engineering Data, 49(6), 1508-1511.

[10] Huang, G., Yao, S., Zhao, Y., & Liu, L. (2011). Isobaric Vapor–Liquid Equilibrium for Binary Systems of Toluene+ Acrylic Acid, Toluene+ Acetic Acid, and Cyclohexane+ Acrylic Acid at 20 kPa. Journal of Chemical & Engineering Data, 56(10), 3914-3919.

[11] ICIS. Chemical price reports. [Online]. Available:
http://www.icispricing.com [2010, July].

[12] ICIS. Chemical price reports. [Online]. Available: http://s.1688.com/selloffer/offer_search.htm[2015, July].

[13] ICIS. ICIS Heren. [Online]. Available: http://www.icis.com/heren/ [2010, July].

[14] Kamihama, N., Matsuda, H., Kurihara, K., Tochigi, K., & Oba, S. (2012). Isobaric vapor–liquid equilibria for ethanol+ water+ ethylene glycol and its constituent three binary systems. Journal of Chemical & Engineering Data,57(2), 339-344.
[15] Kang, Q., Huybrechts, J., Van der Bruggen, B., Baeyens, J., Tan, T., & Dewil, R. (2014). Hydrophilic membranes to replace molecular sieves in dewatering the bio-ethanol/water azeotropic mixture. Separation and Purification Technology, 136, 144-149.

[16] Kurzrock, T., & Weuster-Botz, D. (2010). Recovery of succinic acid from fermentation broth. Biotechnology letters, 32(3), 331-339.

[17] Lin, S. K. C., Du, C., Blaga, A. C., Camarut, M., Webb, C., Stevens, C. V., & Soetaert, W. (2010). Novel resin-based vacuum distillation-crystallisation method for recovery of succinic acid crystals from fermentation broths. Green chemistry, 12(4), 666-671.

[18] Li, J., Chen, C., & Wang, J. (2000). Vapor–liquid equilibrium data and their correlation for binary systems consisting of ethanol, 2-propanol, 1, 2-ethanediol and methyl benzoate. Fluid phase equilibria, 169(1), 75-84.

[19] Londono, A. O. (2010). Separation of succinic acid from fermentation broths and esterification by a reactive distillation method (Doctoral dissertation, Michigan State University).

[20] Luque, R., Lin, C. S., Du, C., Macquarrie, D. J., Koutinas, A., Wang, R., ... & Clark, J. H. (2009). Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method.Green chemistry, 11(2), 193-200.
[21] Moeller, W. P., Englund, S. W., Tsui, T. K., & Othmer, D. F. (1951). Compositions of Vapors from Boiling Solutions-Equilibria under Pressure of Systems: Ethyl Ether-Ethyl Alcohol and Ethyl Ether-Water-Ethyl Alcohol.Industrial & Engineering Chemistry, 43(3), 711-717.

[22] NAGAI, Y., & ISII, N. (1934). Studies on Volatility of Fuels Containing Ethyl Alcohol. Proceedings of the Imperial Academy, 10(10), 650-653.

[23] Orjuela, A., Yanez, A. J., Vu, D. T., Bernard-Brunel, D., Miller, D. J., & Lira, C. T. (2010). Phase equilibria for reactive distillation of diethyl succinate: Part I. System diethyl succinate+ ethanol+ water. Fluid Phase Equilibria, 290(1), 63-67.

[24] Tavan, Y., & Hosseini, S. H. (2013). A novel integrated process to break the ethanol/water azeotrope using reactive distillation–Part I: Parametric study.Separation and Purification Technology, 118, 455-462.

[25] Villamanan, M. A., Allawi, A. J., & Van Ness, H. C. (1984). Vapor/liquid/liquid equilibrium and heats of mixing for diethyl ether/water at 35. degree. C. Journal of Chemical and Engineering Data, 29(4), 431-435.

[26] Voutsas, E. C., Pamouktsis, C., Argyris, D., & Pappa, G. D. (2011). Measurements and thermodynamic modeling of the ethanol–water system with emphasis to the azeotropic region. Fluid Phase Equilibria, 308(1), 135-141.

[27] Vu, D. T., Lira, C. T., Asthana, N. S., Kolah, A. K., & Miller, D. J. (2006). Vapor-liquid equilibria in the systems ethyl lactate+ ethanol and ethyl lactate+ water. Journal of Chemical & Engineering Data, 51(4), 1220-1225.

[28] Wyczesany, A. (2014). Calculation of Vapor–Liquid–Liquid Equilibria at Atmospheric and High Pressures. Industrial & Engineering Chemistry Research, 53(6), 2509-2519.

QR CODE