簡易檢索 / 詳目顯示

研究生: 賴彥豪
Yan-Hao Lai
論文名稱: 熱泵型熱聲裝置之微型化
Miniaturization of Thermoacoustic Device (Heat Pump)
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 陳明志
Ming-Jyh Chern
陳國聲
none
孫珍理
Chen-Li Sun
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 97
中文關鍵詞: 熱聲薄片堆壓電致動器
外文關鍵詞: thermoacoustic, stack, bimorph actuator
相關次數: 點閱:242下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 所謂的熱聲效應裝置, 主要可分為將熱能轉化為聲波之原動機型, 以及利用聲波將熱排走之熱泵型兩種型態
    , 而本實驗中之將嘗試製造一具約6公分大小之熱泵型熱聲裝置, 試著朝將熱聲裝置微性化之目標發展
    。 本實驗裝置使用壓克力材質之密閉腔, 使聲波在密閉腔內形成駐波, 密閉腔長度為半波長, 當所操作的聲波振盪頻率越高, 密閉腔長度則越短
    , 而聲波源則使用可產生最大1434 Pa(peak to peak)聲波壓力之壓電致動器, 聲波振盪頻率操作為2800 Hz
    , 本論文中實驗條件包括使用不同間隙 、 長度及材質之薄片板堆, 觀察薄片堆兩端溫差隨壓力振幅改變之變化
    , 實驗結果發現當聲波壓力振幅越大時, 薄片堆兩端溫差越大
    , 本實驗中產生最佳的溫差為羊毛纖維薄片堆所產生的, 在壓電致動器所能產生之最大壓力 1434 Pa(peak to peak)之情況下
    , 長度1 cm羊毛纖維薄片堆兩端可產生之溫差為3.4C, 而長度1 cm麥拉聚酯薄片堆兩端可產生之溫差則為2.3C。


    Thermoacoustic device is a proven technology in the industry. However, thermoacoustic devices suffer from their low efficiency and did not receive serious attention of researchers in the past. Furthermore, the performance of small sized thermoacoustic devices has not been properly assessed.

    In the present study, a miniaturized (centimeter-sized) thermoacoustic heat pump using high heat capacity and low heat conductivity materials such as mylar and wool as stack materials and driven by a PZT bimorph is constructed. An acoustic standing wave is maintained in the half-wavelength air-tight tube by the PZT bimorph. The maximum acoustic pressure of 1434Pa (peak to peak) is achieved at the natural frequency (2800Hz) of the PZT bimorph actuator. The critical bottleneck in the construction of centimeter-sized thermoacoustic heat pump lies in the fabrication of stack plates with tiny spacing of several hundred microns. Stacks with spacings of 200 and 350 10^-6m and various lengths were built successfully.

    In our experiment, we found the temperature difference at the two extremities increases with the increasing acoustic pressure amplitude. The largest temperature difference achieved is 3.4 degree C for a 1 cm long wool stack and 2.3 degree C for a 1 cm long mylar stack. A preliminary evaluation of the performance of the constructed device is also discussed.

    中文摘要.......................................i 英文摘要.......................................ii 致謝...........................................iv 目錄...........................................v 符號索引.......................................vii 表目錄.........................................viii 圖目錄.........................................ix 1.導論.......................................1 1.1 研究動機.......................................1 1.2 熱聲裝置歷史回顧...............................2 1.3 熱聲裝置簡介...............................4 1.4 論文目的...............................5 1.5 論文大綱...............................6 2.熱聲效應理論分析...............................7 2.1 聲學理論...............................7 2.2 熱力學理論...............................26 2.3 熱聲效應理論...............................29 3.實驗設備及量測方法...............................41 3.1 熱泵型熱聲裝置各部分介紹...............................41 3.1.1 密閉腔...............................41 3.1.2 聲波源...............................42 3.1.3 薄片板堆...............................44 3.1.4 冷熱端熱交換器...............................46 3.2 測量儀器介紹...............................48 3.2.1 壓力感測器...............................48 3.2.2 溫度感測器...............................48 3.2.3 資料擷取系統...............................49 4.實驗結果與分析...............................51 4.1 薄片堆放置位置對冷熱端溫差之影響...............................51 4.2 不同材質薄片堆對冷熱端溫差之影響...............................52 4.3 薄片堆間隙變化對冷熱端溫差之影響...............................52 4.4 薄片堆長度改變對冷熱端溫差之影響...............................53 4.5 振盪壓力對冷熱端溫差之影響...............................55 4.6 熱泵型熱聲裝置之各項性能係數.............................56 5.結論與建議...............................78 5.1 結論...............................78 5.2 建議...............................79 參考文獻 ...............................81

    1.B. Higgins, Nicholson's Journal, 1, p.130, 1802.

    2.P.L. Rijke, Noitz \"{uber} eine neue Art, die in einer an beiden Enden of fenen R\"{o}hre enthaltene Luft in Schwingungen zu versetzen, Annals of Physics(Leipzig) 107, 339(1859);K.T.Feldman,Jr.,``Review of the literature on Rijke thermoacoustic phenomena'', Journal of Sound and Vibration, 7, p.83, 1968

    3.C.Sondhauss, Ueber die Schallschwingungen der Luft in erhitzten Glasr\"{o}hren und in gedeckten Pfeifen von ungleicher Weite, Annals of Physics (Leipzig)79(1), 1850.
    4.Lord Rayleigh(J.W. Struff), The Theory of Sound 2nd ed., Dover, New York, 2, Sec.322, 1945.
    5.W.E. Gifford and R.C. Longsworth, Surface heat pumping, Advances in Cryogenic Engineering, 11, p.171, 1966.
    6.K.T. Feldman, Jr., A study of heat generated pressure oscillations in a closed end pipe, Ph.D.dissertation, Mechanical Engineering, University of Missouri, 1966.Also available as Bur. Eng. Rep. Me-18 and as Sandia Corp., Albuquerque, NM Res. Rep. SC-DC-66-1293.
    7.G.W. Swift, Thermoacoustic engines., Journal of the Acoustical Society of America., 84, p.p.1145-1180, 1988.
    8.Tom Holfer, Thermoacoustic refrigerator design and performance, Ph.D.dissertation, Physics department, University of California, San Diego, 1986.
    9.G.W. Swift, Thermoacoustic natural gas liquefier, Proceedings of the DOE Natural Gas Conference, 1997.
    10.O.G. Symko, Energy Conversion Using Thermoacoustic Devices, 18th International Conference on Thermoelectrics, p.p.645-648, 1999.
    11.Shin-ichi Sakamoto, Y. Watanabe., The experiment studies of thermoacoustic cooler, Ultrasonics, 42, p.p.53-56, 2004.
    12.T. Jin, G.B. Chen, B.R. Wang and S.Y. Zhang, Application of thermoacoustic effect to refrigeration, Review of Scientific Instruments., 74(1), January 2003.
    13.O.G. Symko et al., Design and developement of high-frequency thermoacoustic engines for thermal management in microelectronics, Microelectronics Journal, 35, p.p.185-191, 2004.
    14.I.G. Currie, Fundamental mechanics of fluids 2nd ed., McGraw-Hill, New York, 1993.
    15.See http://www.yutopian.com/Yuan/ prop/Mylar.html
    16.A.F. Mills, Heat transfer 2nd ed., Prentice Hall, Singapore, 1999.

    QR CODE