簡易檢索 / 詳目顯示

研究生: 法賈
Fajar - Budiman
論文名稱: 適用於積體電路之多重元件匹配佈局
Layout Patterns for Multiple-Device Matching in Integrated Circuits
指導教授: 陳伯奇
Poki Chen
口試委員: 呂學坤
Shyue-Kung Lu
王朝欽
Chua-Chin Wang
魏慶隆
Chin-Long Wey
李泰成
Tai-Cheng Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 109
中文關鍵詞: 佈局模式多重元件匹配梯度誤差對稱鏡射反對稱鏡射shuffle雙重鏡射shuffle
外文關鍵詞: Layout pattern, multiple-device matching, gradient error, symmetrical mirroring, anti-symmetrical mirroring, shuffle, doubly mirrored shuffle
相關次數: 點閱:223下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提供以多重元件匹配之高階梯度誤差消除的能力,來建構佈局模式的方法。有了這些方法,工程師將有更大的自由度,依據其創新和電路準確度,來選擇佈局模式。Shuffled模式是被用作為同重心之多重元件的一階佈局模式。為了實現高階梯度消除,兩個實際的方法被稱為對稱鏡射和反對稱鏡射,無論是在水平或是垂直方向皆已被提出。以多重元件匹配為例子,此佈局模式可以很容易地消除四階梯度,其擁有中度的繞線複雜度。考量到繞線成本、複雜度和面積,當佈局模式擁有三階梯度消除以及沒有複雜的繞線時,雙重鏡射shuffle模式會被選用。此外,所有的佈局模式已藉由數學推導和MATLAB模擬,證實可以消除梯度誤差。本電路四電阻匹配是以台積電 0.35μm的製程實現。量測後的結果顯示出,提出的佈局模式能達到更佳的元件匹配,且驗證了提出的方法是有效的。


This thesis provides general methodologies to construct layout patterns for multiple-device matching with high-order gradient error cancellation capability. With these general methodologies, engineers will have more degrees of freedom for choosing layout pattern according to their innovations and the degree of circuit precision. Shuffled pattern is utilized as the 1st-order layout pattern that ensures common centroid for multiple devices. To achieve higher order gradient cancellation, two practical methodologies called symmetrical mirroring and anti-symmetrical mirroring either in horizontal or vertical direction are proposed. As an example for multiple-device matching, the layout pattern can be easily extended to own up to 4th-order gradient cancellation capability with medium routing complexity. Due to routing cost, complexity and area, doubly mirrored shuffle pattern is recommended since it has 3rd-order gradient cancellation capability and not so complicated routing. In addition, all layout patterns have been verified in mathematical derivations and MATLAB simulations to ensure they have the claimed order of gradient error cancellation. A test chip for 4-resistor matching is implemented in a 0.35 μm TSMC technology. The measured results show that the proposed layout pattern achieve much better matching among devices than conventional ones and the usefulness of these proposed methodologies is thus verified.

摘要i Abstractiii Acknowledgementsv Table of Contentsvii List of Figuresxi List of Tablesxiii Chapter 11 Introduction1 1.1Introduction1 1.2Motivation3 1.3Overview of this thesis4 Chapter 25 Mismatch and Gradient Error5 2.1Mismatch5 2.1.1Random Mismatch8 2.1.2Systematic Mismatch9 2.2Mismatch Model14 2.3Gradient Errors18 2.4A Quick Overview of Layout Patterns22 Chapter 325 Two-Device Matching Layout Patterns25 3.1Centroid and Rules of Two-Device Matching25 3.2Nth-Order Central Symmetrical Pattern28 3.3Symmetry and Anti-Symmetry31 Chapter 435 Multiple-Device Matching Layout Patterns35 4.1First-Order Pattern (Shuffle)36 4.2Second-Order Patterns43 4.3Third-Order Patterns52 4.4Fourth-Order Patterns62 4.5Summary and Conclusion69 Chapter 571 Mismatch Simulation71 5.1Simulation Programming71 5.2Layout Simulation and Verification75 5.2.1Simulation of Two-Device Matching75 5.2.2Simulation of Multiple-Device Matching78 Chapter 691 Case Example on Resistor Layout Implemented in 0.35 μm Technology91 6.1Design and Implementation91 6.2Chip Measurement95 Chapter 7101 Conclusion and Further Research101 7.1Conclusion101 7.2Further Research101 References103

[1]Duane Boning and Sani Nassif, “Models of process variations in device and interconnect,” Book Ch. 6 of Design of High-Performance Microprocessor Circuits, by Chandrakasan, A., Bowhill, W.,Fox, F., Wiley-IEEE Press Ebook Chapters, 2001.
[2]K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration,” IEEE J. Solid State Circuits, vol. 37, no. 2, pp. 183–190, Feb. 2002.
[3]B. Stine, D. Boning, and J. Chung, “Analysis and decomposition of spatial variation in integrated circuit processes and devices,” IEEE Trans. Semiconduct. Manuf., vol. 10, no. 1, pp. 24–41, Feb. 1997.
[4]M. Orshansky, L. Milor, and C. Hu, “Characterization of spatial intrafield gate CD variability, its impact on circuit performance, and spatial mask-level correction,” IEEE Trans. Semiconduct. Manuf., vol. 17, no. 1, pp. 2–11, Feb. 2004.
[5]P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and C. Spanos, “Modeling within-die spatial correlation effects for process-design co-optimization,” in Proc. Int. Symp. Quality Electronic Design, Mar. 2005.
[6]Smruti R. Sarangi, Brian Greskamp, Radu Teodorescu, Jun Nakano, Abhishek Tiwari and Josep Torrellas, “VARIUS: A model of process variation and resulting timing errors for microarchitects,” IEEE Trans. on semiconductor and manufacturing, vol. 21, no.1, pp. 3-13, 2008.
[7]Kelin J. Kuhn, Martin D. Giles, David Becher, Pramod Kolar, Avner Kornfeld, Roza Kotlyar, Sean T. Ma, Atul Maheshwari, and Sivakumar Mudanai, “Process Technology Variation,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2197-2208, 2011.
[8]A. Hastings, The Art of Analog Layout, Prentice Call, New Jersey, 2000.
[9]D.A.J. Moran, D.A. MacLaren, S. Porro, H. McLelland, P. John, and J.I.B. Wilson, “Processing of 50 nm gate-length hydrogen terminated diamond FETs for high frequency and high power applications,” Elsevier microelectronic engineering 88, pp. 2691-2693 www.scienceDirect.com, 2011.
[10]A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness,” IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1254–1260, May 2003.
[11]Yongchan Ban, Savithri Sundareswaran, and David Z. Pan, “Electrical impact of line-edge roughness on sub-45-nm node standard cells,” J.Micro/Nanolith. MEMS MOEMS, vol. 9(4), pp. 041206(1-10), Oct-Dec 2010.
[12]Barak Yaakobovitz, Yoel Cohen, Yoed Tsur, “Line edge roughness detection using deep UV light scatterometry,” Elsevier: Microelectronic Engineering 84, pp. 619-625, 2007.
[13]G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy, and A. Asenov, “Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3063–3070, Dec. 2006.
[14]A. R. Brown, G. Roy, and A. Asenov, “Poly-Si gate related variability in decananometre MOSFETs with conventional architecture,” IEEE Trans. Electron Devices, vol. 54, no. 11, pp. 3056–3063, Nov. 2007.
[15]X.-H. Tang, V. K. De, and J. D. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant placement,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 5, no. 4, pp. 369–376, Dec. 1997.
[16]Yiming Li, Chih-Hong Hwang, and Tien-Yeh Li, “Random-Dopant- Induced Variability in Nano-CMOS Devices and Digital Circuits,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1588–1597, 2009.
[17]W.R. Runyan and K.E. Bean, Semiconductor Integrated Circuit Processing Technology, pp. 331, MA : Addison-Wesley, 1994.
[18]Stefan Hausser, Stefan Majoni, Holger Schligtenhorst, Georg Kolwe, “Systematic Mismatch in Diffusion Resistors caused by Photoligthograpy,” Proc. IEEE Int. Conference on Microelectronic Test Structure, vol 15, April 2002.
[19]C.-H. Lin and K. Bult, “A 10-b, 500 Msample/s CMOS DAC in 0.6 mm ,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958, 1998.
[20]M. Borremans, A. Van den Bosch, M. Steyaert, and W. Sansen, “A Low Power, 10-bit CMOS D/A Converter for High Speed Applications,” IEEE Custom Integrated Circuits Conference, pp. 157–160, Dec. 2001.
[21]S. M. Sze, VLSI Technology, New York: McGraw-Hill, 1988.
[22]R.E. Thomas, “Stress-Induced Deformation of Aluminum Metallization in Plastic Molded Semiconductor Devices,” IEEE Trans. on Components, Hybrids, and Manufacturing Technology, vol. CHMT-8,no.4, pp. 427-434, 1985.
[23]J. H. Lau, Ed., Thermal Stress and Strain in Microelectronics Packaging, New York: Van Nostrand Reinhold, 1993.
[24]J. Bastos, M. Steyaert, A. Pergoot, and W. Sansen, “Influence of die attachment on MOS transistor matching,” IEEE Trans. on Semiconductor Manufacturing, vol. 10, pp. 209–217, May 1997.
[25]R. C. Jaeger, R. Ramani, and J. Suhling, “Effects of stress-induced mismatches on CMOS analog circuits,” in Proc. Int. Symp. VLSI Technol., Systems, and Applications, 1995, pp. 354–360.
[26]M. J. M. Pelgrom, A. C. J. Duinmaijer, A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, 1989.
[27]J. L. McCreary, “Matching properties, and voltage and temperature dependence, of MOS capacitors:’ IEEE Journal Solid-State Circuits, vol. SC-16, pp. 608-616. Dec. 1981.
[28]J. B. Shyu, G. 8. Temes, and K. Yao, “Random errors in MOS capacitors,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 1070-1075, 1982.
[29]J. B. Shyu, G. C. Temes, and F. Krummenacher, “Random errors effects in matched MOS capacitors and current sources, IEEE J. Solid-Stute Circuits, vol. SC-19, pp. 948-955, 1984.
[30]K. Lakshmikumar, R. Hadaway, and M. Copeland, “Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 1057-1066, 1986.
[31]Jeroen A. Croon, Maarten Rosmeulen, Stefaan Decoutere, Willy Sansen, and Herman E. Maes, “An Easy-to-Use Mismatch Model for the MOS Transistor, ”IEEE Journal of Solid-State Circuits, vol. 37, no. 8, August 2002.
[32]P. R. Kinget, “Device mismatch and tradeoffs in the design of analog circuits,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1212–1224, Jun. 2005.
[33]S. Lovett, M. Welten, A. Mathewson, and B. Mason, “Optimizing MOS transistor mismatch,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 147150, Jan. 1998.
[34]P. Drennan, C. McAndrew, “Understanding MOSFET mismatch for analog design,” IEEE Journal of Solid-State Circuits, vol. 38, issue. 3, pp. 450-456, Mar. 2003.
[35]Massimo Conti, Paolo Crippa, Simone Orcioni, and Claudio Turchetti, “Layout-Based Statistical Modeling for the Prediction of the Matching Properties of MOS Transistors,” IEEE Trans. on Circuits and Systerms-I, Vol. 49, No. 5, pp. 680-685, May, 2002.
[36]J. Bastos, M. Steyaert, and W. Sansen, “A high yield 12-bit 250-MS/s CMOS D/A converter,” in Proc. IEEE 1996 CICC, pp.431–434, May 1996.
[37]Van der Plas, J. Vandenbussche, W. Sansen, M. Steyaert, and G. Gielen, “A 14-bit intrinsic accuracy Q random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1708–1718, Dec. 1999.
[38]J. Bastos, A. Marques, M. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, pp. 1959–1969, Dec. 1998.
[39]Y. Cong and R. L. Geiger, “Switching-sequence optimization for gradient error-compensation in thermometer-decoded DAC array,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 585–595, July 2000.
[40]J. K. Kibarian and A. J. Strojwas, “Using spatial information to analyze correlations between test structure data, ” IEEE Trans. Semiconductor Manufacturing, vol.4, pp. 219-225, Aug. 1991.
[41]H. Elzinga, “On the impact of spatial parametric variations on MOS transistor mismatch,” in Proc. IEEE Int. Conf. Microelectronic Test Struct., vol. 9, Mar. 1996, pp. 173–177.
[42]Eric Felt, Amit Narayan, and Alberto Sangiovanni-Vincentelli, “Measurement and Modeling of MOS Transistor Current Mismatch in Analog IC’s,” Proc. of ACM, pp. 272-277, 1994.
[43]Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, “A 10-bit 70 MS/s CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 26, pp. 637–642, Apr. 1991.
[44]J. Paul A. van der Wagt, Gordon G. Chu, and Christine L. Conrad, “A Layout Structure for Matching Many Integrated Resistors,” IEEE Transactions on circuits and system—I, Vol. 51, pp. 186-190, Jan. 2004.
[45]Weidong Tian, Philipp Steinmann, Eric Beach, Imran Khan, and Praful Madhani, “Mismatch Characterization of a High Precision Resistor Array Test Structure,” IEEE conference on Microelectronic Test Structures, pp. 11-16, March 24-27 2008.
[46]Xin Dai, Chengming He, Hanqing Xing, Degang Chen, and Randall Geiger, “An Nth order central symmetrical layout pattern for non-linear gradient cancellation,” Proceedings of the 2005 International Symposium on Circuits and Systems, pp. 4835- 4838, May 2005.
[47]J. L., McCreary, Ph.D. Disertation, Univ. California, Berkeley, 1975.
[48]Chengming He, Kuangming Yap, Degang Chen, R. Geiger, “Nth order circular symmetry pattern and hexagonal tesselation: two new layout techniques cancelling nonlinear gradient,” Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on, vol. 1, pp. 237-240, May 2004.
[49]C. A. A. Bastiaansen, D. W. J. Groeneveld, H. J. Schouwenaars, and H. A. H. Termeer, “A 10-b 40-MHz 0.8- m CMOS current-output D/A converter,” IEEE J. Solid-State Circuits, vol. 26, pp. 917–921, July 1991.
[50]Yao-Chen Wang, A Low Power 3-Channel High Precise Current Matching LED Driver with -0.228%~0.198% Deviation among output currents, Master Thesis, NTUST, July 2011.
[51]Yao-Chen Wang, Ya-Ying Li, Fajar Budiman and Poki Chen, “A Low Power Precise Current Balance LED Driver with -0.228%~0.198% Imbalance among Three Output Channels,” National Taiwan Conference on VLSI/CAD, 2012.

[52]J. Bastos, M. Steyaert, B. Graindourze, W. Sansen, “Matching of MOS Transistors with Different Layout Styles,” Proceedings of IEEE Int. Conference on Microelectronic Test Structures, vol. 9, pp. 17-18, March 1996.
[53]Morteza Vadipour, “Gradient Error Cancellation and Quadratic Error Reduction in Unary and Binary D/A Converters,” IEEE Transactions On Circuits And Systems—Ii: Analog And Digital Signal Processing, Vol. 50, No. 12, pp. 1002-1007, December 2003.
[54]R. C. Hibbeler, Engineering Mechanics: Statics, 4th ed., pp. 435, New York: Macmillian Publishing Co., 1998.

QR CODE