簡易檢索 / 詳目顯示

研究生: 李佳勤
Cindrawaty - Lesmana
論文名稱: 台灣中小學校舍結構 耐震能力評估之研究
Seismic Capacity Assessment of Compulsory School Buildings in Taiwan
指導教授: 林英俊
Ing-Jaung Lin
黃世建
Shyh-Jiann Hwang
口試委員: 鍾立來
Lap-Loi Chung
簡文郁
Wen-Yu Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 430
中文關鍵詞: 校舍耐震評估側推
外文關鍵詞: school building, column, seismic assessment, pushover analysis
相關次數: 點閱:286下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工程直覺之採納與過去震後教訓之學習遠比任何數量之計算與分析重要。本研究利用實際建築中柱之細部資料,展示100間台灣台南市與南投縣校舍模型之耐震評估結果。根據九二一集集大地震之勘災結果,低矮剪力型房屋之耐震能力建議採用簡化之非線性靜力側推分析方法來評估,其原理係將損毀樓層內柱之側力位移曲線進行並連相加而計算出整體結構之耐震能力。另外,結構對應之崩塌地表加速度則參考ACT-40所建議之容量震譜方法來估計。
    本研究利用新城國中校舍現地實驗與國家地震中心柱實尺寸試驗之結果來驗證建議之分析方法。校舍模型之耐震評估結果除與現行耐震規範比對外,也與實際建築所處位置之崩塌地表加速度資料庫互相比較。本研究展示並討論1912根柱子受地震力作用下之行為與100間校舍模型之耐震能力。經由耐震能力評估發現這些校舍可能沒有適當地進行耐震設計。簡易推垮分析結果顯示台灣校舍耐震能力與實際在九二一記錄之地震破壞情況相符,而柱桿件主要之破壞模式以撓曲破壞或撓剪破壞為主。


    Engineering sense and learning from past earthquakes are more important than any amounts of computation and analysis. This study reports seismic assessment of 100 school buildings model in Taiwan with the real columns detailing from Tainan and Nantou databank. According to the post-earthquake reconnaissance of the 921 Chi-Chi Earthquake, a simplified nonlinear static pushover analysis was proposed to evaluate low-rise shear building which the capacity of an existing building is estimated by superposing the load-displacement response of vertical members in the damage story. The corresponding collapse peak ground motion was obtained by using Capacity Spectrum Analysis referred to ATC-40.
    Hsin Tsheng Junior High School in-situ pushover test and columns laboratory testing validate the analytical approaches. The seismic assessments are observed with current seismic code requirements and also compared to the real buildings PGA databank. Based on 1912 columns and 100 school buildings model, the general behavior of Taiwan columns and the seismic capacity of school buildings are discussed. Seismic capacity assessments indicate that those school buildings may not well-engineered design. The simplified pushover analysis results in predicting seismic capacity assessment of Taiwan school buildings show good agreement compared with recorded building PGA during Chi-Chi Earthquake. The behaviors of investigated school building columns are mainly dominated by flexural failure or flexural shear failure.

    ABSTRACT iv LIST OF TABLES viii LIST OF FIGURES xviii Chapter 1 INTRODUCTION 1 1.1 BACKGROUND ………………………………………………………........... 1 1.2 PREVIOUS RESEARCH ……………………………………………........... 2 1.3 OBJECTIVE AND SCOPE ……………………………………………........... 4 1.4 ORGANIZATION ………………………………………………………........... 6 Chapter 2 ANALYTICAL MODEL 8 2.1 SEISMIC ASSESSMENT ……………………………………………........... 8 2.2 CAPACITY SPECTRUM ……………………………………………........... 9 2.3 PUSHOVER ANALYSIS ……………………………………………........... 13 2.4 LOAD DEFLECTION CURVES OF COLUMNS …………………........... 14 2.4.1 ESTIMATION OF COLUMN STRENGTH …………………........... 15 2.4.2 ESTIMATION OF COLUMN DISPLACEMENT ……………........... 20 2.4.3 FLEXURAL FAILURE ………………………………………........... 23 2.4.4 FLEXURAL SHEAR FAILURE ……………………………........... 24 2.4.5 SHEAR FAILURE ……………………………………………........... 25 2.4.6 FLEXURAL SHEAR FAILURE (TRANSITION ZONE) …........... 26 2.5 VERIFICATION OF MEMBER MODEL ……………………………........... 27 2.6 VERIFICATION OF STRUCTURE MODEL ………………………........... 28 Chapter 3 RESEARCH PROGRAM 30 3.1 SCHOOL BUILDING DATABANK …………………………………........... 30 3.2 BUILDING MODEL …………………………………………………........... 32 3.3 ANALYSIS SET UP …………………………………………………........... 33 Chapter 4 ANALYTICAL RESULTS 36 5.1 BUILDING RESULTS …………………………………………………........... 37 4.1.1 BUILDING PGA ……………………………………………........... 38 4.1.2 BUILDING DRIFT RATIO……………………….……………........... 41 4.1.3 BUILDING DUCTILITY ………………………………………........... 42 4.1.4 BUILDING BASE SHEAR RATIO ……………………………........... 43 5.2 COLUMN RESULTS …………………………………………………........... 44 4.2.1 COLUMN STRESS RESULTS ……………………………........... 46 4.2.2 COLUMN DRIFT RATIO RESULTS ………………………........... 48 4.2.3 COLUMN DUCTILITY RESULTS ……………………………........... 49 4.2.4 COLUMN SUMMARY RESULTS ……………………………........... 50 Chapter 5 SUMMARY AND FUTURE WORK 51 5.1 SUMMARY ……………………………………………………………........... 51 5.2 FUTURE WORK ………………………………………………………........... 53 REFERENCES 55 TABLES 62 FIGURES 124 Appendix A: VERIFICATION OF MEMBER MODEL A-1 Appendix B: CONFINEMENT EFFECTS B-1 Appendix C: COLUMN LOAD-DEFLECTION CURVE AND BUILDING PUSHOVER CURVE RESULTS OF 100 SCHOOL BUILDINGS MODEL C-1

    ABRI (1999), “Evaluation of Seismic Capacity of Reinforced Concrete Building", Architecture and Building Research Institute, Ministry of Interior, Taiwan, R.O.C. (in Chinese)
    ACI Committee 318 (2005), “Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05)”, American Concrete Institute, Farmington Hills.
    ASCE-ACI Committee 445 on Shear and Torsion (1998), “Recent Approaches to Shear Design of Structural Concrete”, ASCE journal of Structural Engineering, 124(12), 1375-1417.
    ATC (1996), “Seismic Evaluation and Retrofit of Concrete Buildings,” ATC-40 Report, Applied Technology Council, Redwood City, California, SSC 96-01, Nov.
    Berry, M., and Eberhard, M. (2005), “Practical Performance Model for Bar Buckling”, Journal of Structural Engineering, ASCE, Vol. 131, No. 7, pp. 1060-1070.
    Chopra, A. K. (1995), “Dynamics of Structures-Theory and Applications to Earthquake Engineering”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
    Chopra, A. K.; Clough, D. P.; and Clough, R.W. (1973), ”Earthquake Resistance of Building with “Soft” First Storey”, Earthquake Engineering and Structural Dynamics, 1, No. 4, 345-55.
    Corley, W. G. (1996), “Rotational Capacity of Reinforced Concrete Beams”, Journal of Structural Engineering, ASCE, Vol.92, No. 5, pp. 121-146.
    Dowrick D. J. (1987), “Earthquake Resistant Design: For Engineers and Architects”, 2nd Edition, John Wiley & Sons.
    Elwood, K. (2002), “Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames,” Ph. D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley.
    Elwood, K. J. (2003), “Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames”, Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley.
    Elwood, K., and Moehle, J. (2003), “Shake Table Tests on the Axial Load Failure of Reinforced Concrete Columns,” Proceedings, fib symposium, Concrete Structures in Seismic Regions, Athens.
    Elwood, K.J., and Moehle, J.P. (2004), “Evaluation of Existing Reinforced Concrete Columns”, Proceedings of the Thirteenth World Conference on Earthquake Engineering, Vancouver, BC, Canada, August, 15 pages.
    Elwood, K.J., and Moehle, J. P. (2005), “Axial Capacity Model for Shear-Damaged Columns,” ACI Structural Journal, Vol.102, No. 4, pp. 578-587.
    Elwood, K.J., and Moehle, J. P. (2005), “Drift Capacity of Reinforced Concrete Column with Light Transverse Reinforcement,” Earthquake Spectra, Vol. 21, No. 1, pp. 71-89.
    Gupta A., and Krawinkler H. (2000), “Dynamic P-Delta Effects for Flexible Inelastic Steel Structures”, Journal of Structural Engineering, ASCE, Vol. 126, No. 1, January, pp. 145-154.
    Hsu, C. T. (1988), “Analysis and Design of Square and Rectangular Columns by Equation of Failure Surface”, ACI Structural Journal, Vol. 85, No. 2, Mar.-Apr., pp.167-179.
    Hwang, S. J., and Lee, H. J. (2002), “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model”, Journal of Structural Engineering, ASCE, Vol. 128, No. 12, December, pp. 1519-1526.
    Hwang, S. J., and Lee, H. J. (2004), Author’s closure to the paper “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, Vol. 130, No. 3, pp. 530-531.
    JBDPA (1990), “Standard for Seismic Evaluation of Existing Reinforced Concrete Building”, The Japan Building Disaster Prevention Association, Tokyo, Japan. (in Japanese)
    Kawashima, K., and Aizawa, K. (1986), “Modification of Earthquake Response Spectra with Respect to Damping Ratio”, Proceedings of the third U.S. National Conference on Earthquake Engineering, South Carolina, pp.1107-1116.
    Kuo, W. W.; Hwang, S. J.; and Chen, Y. Z., (2006) “Force Transfer Mechanisms and Shear Strength of Reinforced Concrete Beam-Column Elements,” Proceedings of 4th International Conference on Earthquake Engineering, October 12-13, Taipei City, Taiwan.
    Lee H. J.; Hwang S. J.; Tsai C. H.; and Hwang J. S. (2004), “Seismic Evaluation of Existing Reinforced Concrete Building-Shaking Table Tests and Pushover Analysis,” The 6th Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building Structures (SEEBUS 2004), Taipei, Taiwan, November.
    Lee H.J., and Hwang S.J (2005), “Seismic Evaluation of Existing Buildings: Theory and Application”, International Training Program for Seismic Design of Structures 2005, Taipei, Taiwan, October.
    Lehman D. E., and Moehle J. P. (2000), “Seismic Performance of Well-confined Concrete Bridge Columns,” PEER-1998/01. Pacific Earthquake Engineering Research Center, University of California, Berkeley. pp. 316.
    Mattock, A. H., (1967), discussion of “Rotational Capacity of Reinforced Concrete Beams”, paper by Corley, W. G., Journal of Structural Engineering, ASCE, Vol.93, pp. 519-522.
    Moehle, J. P. (1992), “Displacement-Based Design of RC Structures Subjected to Earthquakes,” Earthquake Spectra, Vol. 8, No. 3, pp.403–428.
    Newmark, N. M., and Hall, W. J. (1982), Earthquake Spectra and Design, Engineering Monographs on Earthquake Criteria, Structure Design, and String Motion Records, EERI.
    Otani S., and Sozen M. A. (1972), “Behavior of Multistory Reinforced Concrete Frames during Earthquakes,” Structural Research Series No. 392, University of Illinois Urbana. pp. 551.
    Park R., and Paulay T. (1975), “Reinforced Concrete Structures”, John Wiley & Sons.
    Schlaich, J.; Schäfer, K; and Jennewein, M. (1987), “Toward a Consistent Design of Reinforced Concrete Structures, ”PCI Journal, Vol. 32, No.3, May-June, pp. 74-150.
    Sezen, H. (2002), “Seismic Response and Modeling of Reinforced Concrete Building Columns”, Ph.D. Dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley.
    Sheu, M. S. (1976), “A Gird Model for Prediction of Monotonic and Hysteretic Behavior of Reinforced Concrete Slab – Column Connections Transferring Moments”, Ph.D. Dissertation, University of Washington, Seattle, Washington.
    Sheu, M.S.; Kuo, H. Y.; and Deng S.H. (2002), “Fast Seismic Assessment for RC School and Street-Front Buildings”, Journal of Chinese Institute of Civil and Hydraulic Engineering, 14(1),21-30. (in Chinese)
    Thurlimann, B. (1979), "Torsional Strength of Reinforced and Prestressed Concrete Beams - CEB Approach," Bulletin 113, ACI Publication SP-59, Detroit, Mich.
    Tu, Y.H.; Kuo, W. W.; and Hwang, S. J. (2005), “Field Test on RC Building of Hsin-Tsheng Junior High School in Taiwan for Seismic Resistance,” DaiDaiToku/NEES Workshop on Seismic Response of Reinforced Concrete Buildings, Berkeley, USA, July 7-8.
    Wallace, J. W. (1992), “BIAX:Revision 1 A Computer Program for the Analysis of Reinforced Concrete and Reinforced Masonry Sections,”Report No. CU/CEE-92/4, Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York, February.
    Watanabe F., and Sumi A. (2006), “Design and Construction Practice of Precast Concrete Building in Japan”, ANIPPAC 2nd Latin America Conference and 1st International Conference of Precast Structures, Veracruz, Mexico, October.
    Zhu, L. (2005), “Probabilistic Drift Capacity Models for Reinforced Concrete Columns”, MASc Thesis, Department of Civil Engineering, University of British Columbia.
    Zhu, L.; Elwood, K.J.; Haukaas T.; and Gardoni, P. (2005), “Application of a Probabilistic Drift Capacity Model for Shear-Critical Columns,” Journal of the American Concrete Institute (ACI), Special Publication.
    大漢技術學院土木系材料試驗室 (2005),「花蓮縣新城國中實體建築物靜態推垮試驗混凝土鑽心試體抗壓強度試驗報告」,大漢技術學院。
    大漢技術學院土木系材料試驗室 (2006),「混凝土鑽心試體抗壓強度試驗報告」,大漢技術學院。
    中國土木水利工程學會 (2000),「混凝土工程設計規範與解說(土木401-86a)」第二版,中國土木水利工程學會混凝土工程委員會研究報告(14),台北。
    內政部營建署編輯委員會 (2002),「建築技術規則」,營建雜誌社。
    內政部營建署編輯委員會 (2005),建築物耐震設計規範及解說,營建雜誌社,台北。
    內政部營建署編輯委員會 (2006),「建築物耐震設計規範及解說」,營建雜誌社,台北。
    江文卿、邱聰智、鍾立來、黃世建,(2006)「花蓮縣新城國中校舍結構現地實驗」,中華民國第八屆結構工程研討會論文摘要集,南投,第316頁。
    杜怡萱 (2004),「RC學校建築結構振動台試驗與耐震診斷分析研究」,博士論文,國立成功大學建築研究所,台南。
    杜怡萱與涂耀賢 (2005),「耐震詳評之簡化推垮分析法」,國家地震工程研究中心報告,NCREE-05-018,台北, 10月。
    涂耀賢 (2005),「低矮型RC牆暨構架之側向載重位移曲線預測研究」,博士論文,國立台灣科技大學營建工程系,台北, 1月。
    國力雲林科技大學營建材料檢測中心 (2005),「雲林縣口湖國小校舍現地試驗之材料取樣檢測與結構配筋圖重建」,國立雲林科技大學, 9月。
    張旭福 (1993),「鋼筋混凝土短柱補強措施之定量研究」,國立成功大學建築研究所,碩士論文,台南。
    張嘉祥與呂國維 (1993),「學校建築震害與柱單位載重及壁量比與耐震指標關係探討」,中華民國第五屆結構工程研討會論文集(二),民國89年8月,台灣南投,第1059-1067頁。
    許茂雄、張嘉祥、姚昭智、劉玉文 (1993),「台南市國民中小學及幼稚園學校建築結構安全評估報告」,成功大學建築系, 9月。
    陳奕信 (2003),「含磚牆RC建築結構之耐震診斷」,博士論文,國立成功大學建築研究所,臺南。
    陳雅婷 (2006),「台灣中小學校舍結構耐震能力評估之研究」, 碩士論文,國立台灣科技大學營建工程系,台北,民國九十五年。
    陳雅婷,江文卿,黃世建 (2006),「中小學校舍震害及結構特性」,國家地震工程研究中心報告,NCREE-05-018,台北, 10月。
    陳穎治 (2004),「鋼筋混凝土構件在反覆載重作用下撓剪強度研究」,碩士論文,國立台灣科技大學營建工程系,台北。
    陳錫慶、李宏仁、杜怡萱、賴國龍 (2006)「以南投縣集集地震震損校舍資料驗核既有耐震能力初步評估法之研究」,中華民國第八屆結構工程研討會論文摘要集,南投,第344頁。
    黃世建、陳正平、王森源、陳正誠與蕭興臺 (1996),「學校建築常見之結構損害現象歸類及補強計畫建議」,內政部建築研究所, 6月。
    楊智斌 (2005), 「新城國中校舍實尺寸柱桿件之耐震測試研究」,碩士論文,國立台灣科技大學營建工程系,台北。
    鄧崇任、柴駿甫、廖文義、蘇晴茂、簡文郁、與周德光 (2004),「耐震與性能設計規範研究(一)」,國家地震工程研究中心報告,NCREE-04-015,台北, 12月。
    鍾立來、簡文郁、葉勇凱、黃世建、佘健維、張撼軍、陳永蒼、王翊光、周德光、許丁友、邱建國、與邱聰智 (2005),「國民中小學典型校舍耐震能力之簡易調查」,國家地震工程研究中心報告,NCREE-05-007,台北,6月。

    QR CODE