簡易檢索 / 詳目顯示

研究生: 顏志軒
Zhi-Xuan Yan
論文名稱: β-三鈣磷酸鹽及膠原蛋白複合生物墨水之流變及印刷性之研究
Study of rheology and printability for β-tricalcium phosphate/ collagen composite bioinks
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
林穎志
Ying-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 136
中文關鍵詞: 甘胺酸-硝酸鹽生物墨水積層列印β-三鈣磷酸鹽顆粒形貌噴霧乾燥法
外文關鍵詞: glycine nitrate, bioink, 3D printing, beta-tricalcium phosphate, particle morphology, spray drying
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • β-三鈣磷酸鹽(β-tricalcium phosphate, β-TCP)粉末廣泛應用於
    生物墨水中的填料。本研究探討了甘胺酸-硝酸鹽作為形貌修飾劑對
    噴霧乾燥法製備的β-TCP 顆粒結構的影響,藉由添加不同重量百分
    比例的甘胺酸硝酸鹽(0, 3.5, 10.1 及28.3 wt%)。為了評估結果,通
    過將粉末與磷酸鹽緩衝生理鹽水和膠原蛋白粉末混合製備成生物墨
    水。隨後,這些生物墨水由3D 列印機列印成複合支架。其中為了
    評估顆粒形狀對可成形性的影響,進行了包括相組成、形貌形狀、
    比表面積、顆粒大小及體外細胞活性在內的檢驗。首先,微觀結構
    顯示,添加甘胺酸硝酸鹽後形成了多孔片狀和固體不規則形狀。其
    次,在生物墨水之流變性測試中使用甘胺酸處理之β-TCP 相對於未
    添加的展現出較高的黏度。隨後,在成形性評估中,使用甘胺酸處
    理之β-TCP 同樣展現出較高的成形性,相比未添加的甘胺酸處理之
    β-TCP。此外,生物相容性測試顯示,在不同添加比例的甘胺酸處
    理之β-TCP 複合支架, 細胞存活率範圍為139.70%±2.64%至
    149.56%±3.50%。本研究強調了甘胺酸作為前驅物在調節顆粒形貌
    的關鍵作用,從而在列印過程中提高了支架的可成形性,同時保持
    了優異的生物相容性。


    Beta-tricalcium phosphate (β-TCP) particles are widely employed as
    fillers in bio-ink formulations. This study explored the influence of
    glycine precursor nitrate as a morphology modifier on the structure of β-
    TCP particles via the spray drying method. The amounts of glycine
    precursor nitrate added to the β-TCP precursor solution (0, 3.5, 10.1, and
    28.3 wt%) were investigated. To scope out the results, bio-inks were
    synthesized by incorporating powder with phosphate-buffered saline and
    collagen powder. Subsequently, these bioink formulations were processed
    into scaffolds by using a 3D printer. To assess the impact of particle
    shapes on formability, comprehensive characterization was conducted
    encompassing phase composition, morphology shape, specific surface
    area, and particle size. Furthermore, cell viability was assessed through
    the MTT assay. Initially, the microstructure result revealed the formation
    of porous flakes and solid irregular shapes following the addition of
    glycine precursor nitrate. Secondly, for the printability measurements,
    bioinks and scaffolds prepared with glycine precursor treated β-TCP
    exhibited higher viscosity and formability compared to those prepared
    with pure β-TCP. Also, biocompatibility testing demonstrated cell
    viability ranging from 139.70%±2.64% to 149.56±3.50% upon the
    application of glycine precursor nitrate with β-TCP at the various adding
    amounts. This study highlighted the pivotal role of glycine precursor as a
    precursor in modulating particle morphology, thereby enhancing scaffold
    formability during printing while maintaining excellent biocompatibility.

    摘要................................................................................................................................. i Abstract ........................................................................................................................ iii 致謝................................................................................................................................ v 目錄.............................................................................................................................. vii 圖目錄........................................................................................................................... ix 表目錄.......................................................................................................................... xv 第一章 緒論................................................................................................................... 1 1.1 研究背景.......................................................................................................... 1 1.2 研究動機 .......................................................................................................... 1 第二章 文獻回顧........................................................................................................... 3 2.1 生物支架.......................................................................................................... 3 2.1.1 第一代生物支架................................................................................... 5 2.1.2 第二代生物支架................................................................................... 7 2.1.3 第三代生物支架................................................................................... 8 2.1.4 第四代生物支架................................................................................... 9 2.2 生物墨水之內容需求.................................................................................... 10 2.2.1 生物墨水之內容物需求..................................................................... 11 2.2.2 生物墨水之流體性質需求................................................................. 13 2.3 生物陶瓷........................................................................................................ 18 2.3.1 近惰性生醫陶瓷 (Nearly inert bioceramics) ..................................... 20 2.3.2 孔隙性生醫陶瓷 (Porous bioceramics) ............................................. 20 2.3.3 生物活性生醫陶瓷 (Bioactive ceramics) .......................................... 21 2.3.4 吸收性生醫陶瓷 (Resorbable bioceramics) ....................................... 21 2.4 β-TCP 合成方式 ............................................................................................ 22 2.4.1 溶膠-凝膠法 (Sol-gel method) ........................................................... 22 2.4.2 噴霧熱裂解法 (Spray pyrolysis method) ........................................... 23 2.4.3 噴霧乾燥法 (Spray Drying method) .................................................. 25 2.4.4 硝酸-甘胺酸法 (Glycine precursor-nitrate combustion method) ....... 26 第三章 實驗方法與目的............................................................................................. 29 3.1 實驗設計........................................................................................................ 29 3.2 實驗藥品........................................................................................................ 33 3.3 實驗儀器........................................................................................................ 34 3.4 樣品製備方法................................................................................................ 35 3.4.1 前驅液濃度對噴霧乾燥β-TCP 粉體粒徑的影響 ........................... 35 3.4.2 甘胺酸與β-TCP 比例對噴霧乾燥製備之β-TCP 粉體形貌的影響 37 3.4.3 甘胺酸製備之β-TCP 生物墨水於3D 列印後成形性之比較 ......... 39 3.5 樣品性質分析................................................................................................ 40 3.5.1 X 光晶體繞射儀 (X-ray diffractometer, XRD) .................................. 40 3.5.2 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM-7900F) ........................................................ 41 3.5.3 氮氣吸/脫附分析儀 (Nitrogen adsorption/desorption isotherm) 42 3.5.4 動態剪切流變儀 (Discovery Hybrid Rheometer, DHR) ................... 43 3.5.5 雷射粒徑分析儀 (Particle Size Analyzer, PSA) ................................ 44 3.5.6 體外生物相容性評估 (In-vitro cell viability).................................... 45 3.5.7 松裝密度測試儀 (Bulk density Analyzer, BDA) ............................... 47 第四章 實驗結果......................................................................................................... 48 4.1 β-TCP 粉體性質分析 .................................................................................... 48 4.1.1 晶相分析............................................................................................. 48 4.1.2 粉體形貌及粒徑分析......................................................................... 50 4.1.3 粉體比表面積分析............................................................................. 54 4.1.4 粉體化學成份分析............................................................................. 55 4.2 甘胺酸處理β-TCP 粉體之合成及分析 ....................................................... 57 4.2.1 晶相分析............................................................................................. 57 4.2.2 粉體形貌及粒徑分析......................................................................... 59 4.2.3 粉體比表面積分析............................................................................. 64 4.2.4 粉體化學成份分析............................................................................. 64 4.2.5 β-TCP 粉體之體外細胞活性評估 ..................................................... 67 4.3 甘胺酸處理之β-TCP/ 膠原蛋白複合生物墨水之性質分析 ...................... 70 4.3.1 6.250% β-TCP 固含量之墨水流變特性分析 .................................... 72 4.3.2 9.375%β-TCP 固含量之墨水流變特性分析 ..................................... 80 4.3.3 12.500%β-TCP 固含量之墨水流變特性分析 ................................... 88 4.4 甘胺酸處理之β-TCP/ 膠原蛋白複合生物支架之性質分析 ...................... 96 4.4.1 6.250% β-TCP 固含量之複合支架的微觀結構觀察及性質分析 .... 97 4.4.2 9.375% β-TCP 固含量之複合支架的微觀結構觀察及性質分析 .. 104 4.4.3 12.5% β-TCP 固含量之複合支架的微觀結構觀察及性質分析 .... 110 第五章 結果討論....................................................................................................... 117 5.1 β-TCP 顆粒大小對比表面積之影響 .......................................................... 117 5.2 添加與未添加甘胺酸在黏度上的差異性比較.......................................... 119 5.3 甘胺酸製備之β-TCP 生物墨水的流變性質對成形性之探討 ................. 122 5.4 甘胺酸製備之β-TCP 複合生物支架對細胞存活率之探討 ..................... 124 第六章 結論............................................................................................................... 126 第七章 未來工作....................................................................................................... 127 參考文獻.................................................................................................................... 128

    [1]Calori G M, Mazza E, Colombo M and Ripamonti C 2011 The use of
    bone-graft substitutes in large bone defects: Any specific needs? Injury 42
    S56–63
    [2]Ravoor J, Thangavel M and Elsen S R 2021 Comprehensive Review
    on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction
    ACS Appl. Bio Mater. 4 8129–58
    [3]Ho-Shui-Ling A, Bolander J, Rustom L E, Johnson A W, Luyten F P
    and Picart C 2018 Bone regeneration strategies: Engineered scaffolds,
    bioactive molecules and stem cells current stage and future perspectives
    Biomaterials 180 143–62
    [4]Kim W and Kim G 2019 Collagen/bioceramic-based composite bioink
    to fabricate a porous 3D hASCs-laden structure for bone tissue
    regeneration Biofabrication 12 015007
    [5]Anon https://www.biohorien.com/horien-collagen-bone-graft-matrix-
    1666944421.html
    [6]Ferreira A M, Gentile P, Chiono V and Ciardelli G 2012 Collagen for
    bone tissue regeneration Acta Biomaterialia 8 3191–200
    [7]Manon‐Jensen T, Kjeld N G and Karsdal M A 2016 Collagen‐mediated
    hemostasis Journal of Thrombosis and Haemostasis 14 438–48
    [8]Maslennikova A, Kochueva M, Ignatieva N, Vitkin A, Zakharkina O,
    Kamensky V, Sergeeva E, Kiseleva E and Bagratashvili V 2015 Effects of
    gamma irradiation on collagen damage and remodeling International
    Journal of Radiation Biology 91 240–7
    [9]Takitoh T, Bessho M, Hirose M, Ohgushi H, Mori H and Hara M 2015
    Gamma-cross-linked nonfibrillar collagen gel as a scaffold for osteogenic
    differentiation of mesenchymal stem cells Journal of Bioscience and
    Bioengineering 119 217–25
    [10] Wang W, Zhang Y, Ye R and Ni Y 2015 Physical crosslinkings of
    edible collagen casing International Journal of Biological
    Macromolecules 81 920–5
    [11] Yoshioka S A and Goissis G 2008 Thermal and spectrophotometric
    studies of new crosslinking method for collagen matrix with
    glutaraldehyde acetals J Mater Sci: Mater Med 19 1215–23
    [12] Dong C and Lv Y 2016 Application of Collagen Scaffold in Tissue
    Engineering: Recent Advances and New Perspectives Polymers 8 42
    [13] Degirmenbasi N, Kalyon D M and Birinci E 2006 Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol) Colloids and
    Surfaces B: Biointerfaces 48 42–9
    [14] Takamoto T, Hiraoka Y and Tabata Y 2007 Enhanced proliferation
    and osteogenic differentiation of rat mesenchymal stem cells in collagen
    sponge reinforced with different poly(ethylene terephthalate) fibers
    Journal of Biomaterials Science, Polymer Edition 18 865–81
    [15] Wu J and Hong Y 2016 Enhancing cell infiltration of electrospun
    fibrous scaffolds in tissue regeneration Bioactive Materials 1 56–64
    [16] Ghezzi C E, Marelli B, Donelli I, Alessandrino A, Freddi G and
    Nazhat S N 2017 Multilayered dense collagen-silk fibroin hybrid: a
    platform for mesenchymal stem cell differentiation towards chondrogenic
    and osteogenic lineages: Layered dense collagen-silk fibroin scaffolds J
    Tissue Eng Regen Med 11 2046–59
    [17] Wang J, Yang Q, Mao C and Zhang S 2012 Osteogenic
    differentiation of bone marrow mesenchymal stem cells on the
    collagen/silk fibroin bi‐template‐induced biomimetic bone substitutes J
    Biomedical Materials Res 100A 2929–38
    [18] Fujita M, Kinoshita Y, Sato E, Maeda H, Ozono S, Negishi H,
    Kawase T, Hiraoka Y, Takamoto T, Tabata Y and Kameyama Y 2005
    Proliferation and Differentiation of Rat Bone Marrow Stromal Cells on
    Poly(glycolic acid)–Collagen Sponge Tissue Engineering 11 1346–55
    [19] Zhang Q, Lv S, Lu J, Jiang S and Lin L 2015 Characterization of
    polycaprolactone/collagen fibrous scaffolds by electrospinning and their
    bioactivity International Journal of Biological Macromolecules 76 94–
    101
    [20] Jia L, Prabhakaran M P, Qin X and Ramakrishna S 2013 Stem cell
    differentiation on electrospun nanofibrous substrates for vascular tissue
    engineering Materials Science and Engineering: C 33 4640–50
    [21] Wang C, Lin K, Chang J and Sun J 2013 Osteogenesis and
    angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold
    via activation of AMPK/ERK1/2 and PI3K/Akt pathways Biomaterials 34
    64–77
    [22] Griciuc A, Popescu-Negreanu T, Grecu R and Simon V COREM
    COMPOSITE MATRIX BEHAVIOUR IN SIMULATED BODY FLUID
    [23] Geiger M 2003 Collagen sponges for bone regeneration with rhBMP-
    2 Advanced Drug Delivery Reviews 55 1613–29
    [24] Yunus Basha R, T.S. S K and Doble M 2015 Design of biocomposite
    materials for bone tissue regeneration Materials Science and Engineering: C 57 452–63
    [25] Yunoki S, Ikoma T, Monkawa A, Ohta K, Kikuchi M, Sotome S,
    Shinomiya K and Tanaka J 2006 Control of pore structure and mechanical
    property in hydroxyapatite/collagen composite using unidirectional ice
    growth Materials Letters 60 999–1002
    [26] Lin K, Liu Y, Huang H, Chen L, Wang Z and Chang J 2015
    Degradation and silicon excretion of the calcium silicate bioactive
    ceramics during bone regeneration using rabbit femur defect model J
    Mater Sci: Mater Med 26 197
    [27] Li H, Zhai W and Chang J 2009 Effects of Wollastonite on
    Proliferation and Differentiation of Human Bone Marrow-derived
    Stromal Cells in PHBV/Wollastonite Composite Scaffolds J Biomater
    Appl 24 231–46
    [28] Wang X, Zhou Y, Xia L, Zhao C, Chen L, Yi D, Chang J, Huang L,
    Zheng X, Zhu H, Xie Y, Xu Y and Lin K 2015 Fabrication of nanostructured
    calcium silicate coatings with enhanced stability, bioactivity
    and osteogenic and angiogenic activity Colloids and Surfaces B:
    Biointerfaces 126 358–66
    [29] Lohfeld S, Cahill S, Barron V, McHugh P, Dürselen L, Kreja L,
    Bausewein C and Ignatius A 2012 Fabrication, mechanical and in vivo
    performance of polycaprolactone/tricalcium phosphate composite
    scaffolds Acta Biomaterialia 8 3446–56
    [30] Zhao L and Chang J 2004 Preparation and characterization of
    macroporous chitosan/wollastonite composite scaffolds for tissue
    engineering Journal of Materials Science: Materials in Medicine 15 625–
    9
    [31] Sionkowska A and Kozłowska J 2013 Properties and modification of
    porous 3-D collagen/hydroxyapatite composites International Journal of
    Biological Macromolecules 52 250–9
    [32] Bosetti M and Cannas M 2005 The effect of bioactive glasses on
    bone marrow stromal cells differentiation Biomaterials 26 3873–9
    [33] Arahira T and Todo M 2016 Variation of mechanical behavior of β-
    TCP/collagen two phase composite scaffold with mesenchymal stem cell
    in vitro Journal of the Mechanical Behavior of Biomedical Materials 61
    464–74
    [34] Von Doernberg M-C, Von Rechenberg B, Bohner M, Grünenfelder S,
    Van Lenthe G H, Müller R, Gasser B, Mathys R, Baroud G and Auer J
    2006 In vivo behavior of calcium phosphate scaffolds with four different pore sizes Biomaterials 27 5186–98
    [35] Chazono M, Tanaka T, Kitasato S, Kikuchi T and Marumo K 2008
    Electron microscopic study on bone formation and bioresorption after
    implantation of β-tricalcium phosphate in rabbit models Journal of
    Orthopaedic Science 13 550–5
    [36] Chazono M, Tanaka T, Komaki H and Fujii K 2004 Bone formation
    and bioresorption after implantation of injectable β‐tricalcium phosphate
    granules–hyaluronate complex in rabbit bone defects J Biomedical
    Materials Res 70A 542–9
    [37] Huec J C L, Foliguet B and Basse-Cathalinat B 1998 Evolution of the
    local calcium content around irradiated -tricalcium phosphate ceramic
    implants: in vivo study in the rabbit
    [38] Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T and
    Endo N 2005 Comparison of hydroxyapatite and beta tricalcium
    phosphate as bone substitutes after excision of bone tumors J Biomed
    Mater Res 72B 94–101
    [39] Kucera T, Sponer P, Urban K and Kohout A 2014 Histological
    assessment of tissue from large human bone defects repaired with β-
    tricalcium phosphate Eur J Orthop Surg Traumatol 24 1357–65
    [40] Zhou C, Ye X, Fan Y, Ma L, Tan Y, Qing F and Zhang X 2014
    Biomimetic fabrication of a three-level hierarchical calcium
    phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering
    Biofabrication 6 035013
    [41] Bellucci D, Sola A, Anesi A, Salvatori R, Chiarini L and Cannillo V
    2015 Bioactive glass/hydroxyapatite composites: Mechanical properties
    and biological evaluation Materials Science and Engineering: C 51 196–
    205
    [42] Seidenstuecker M, Kerr L, Bernstein A, Mayr H, Suedkamp N,
    Gadow R, Krieg P, Hernandez Latorre S, Thomann R, Syrowatka F and
    Esslinger S 2017 3D Powder Printed Bioglass and β-Tricalcium
    Phosphate Bone Scaffolds Materials 11 13
    [43] Shahrezaie M, Zamanian A, Sahranavard M and Shahrezaee M H
    2024 A critical review on the 3D bioprinting in large bone defects
    regeneration Bioprinting 37 e00327
    [44] Agarwal S, Saha S, Balla V K, Pal A, Barui A and Bodhak S 2020
    Current Developments in 3D Bioprinting for Tissue and Organ
    Regeneration–A Review Front. Mech. Eng. 6 589171
    [45] Bueno E M and Glowacki J 2009 Cell-free and cell-based approaches for bone regeneration Nat Rev Rheumatol 5 685–97
    [46] Chen Qin and ChengtieWu 2022 Inorganic biomaterials‐based
    bioinks for three‐dimensional bioprinting of regenerative scaffolds View 3
    [47] Ma L, Wang X, Zhou Y, Ji X, Cheng S, Bian D, Fan L, Zhou L, Ning
    C and Zhang Y 2021 Biomimetic Ti–6Al–4V alloy/gelatin methacrylate
    hybrid scaffold with enhanced osteogenic and angiogenic capabilities for
    large bone defect restoration Bioactive Materials 6 3437–48
    [48] Ma H, Li T, Huan Z, Zhang M, Yang Z, Wang J, Chang J and Wu C
    2018 3D printing of high-strength bioscaffolds for the synergistic
    treatment of bone cancer NPG Asia Mater 10 31–44
    [49] Midha S, Dalela M, Sybil D, Patra P and Mohanty S 2019 Advances
    in three‐dimensional bioprinting of bone: Progress and challenges J
    Tissue Eng Regen Med term.2847
    [50] Huang Y-H, Jakus A E, Jordan S W, Dumanian Z, Parker K, Zhao L,
    Patel P K and Shah R N 2019 Three-Dimensionally Printed Hyperelastic
    Bone Scaffolds Accelerate Bone Regeneration in Critical-Size Calvarial
    Bone Defects Plastic & Reconstructive Surgery 143 1397–407
    [51] Mouser V H M, Levato R, Mensinga A, Dhert W J A, Gawlitta D and
    Malda J 2020 Bio-ink development for three-dimensional bioprinting of
    hetero-cellular cartilage constructs Connective Tissue Research 61 137–
    51
    [52] Nam S Y and Park S-H 2018 ECM Based Bioink for Tissue Mimetic
    3D Bioprinting Biomimetic Medical Materials Advances in Experimental
    Medicine and Biology vol 1064, ed I Noh (Singapore: Springer Singapore)
    pp 335–53
    [53] Hospodiuk M, Dey M, Sosnoski D and Ozbolat I T 2017 The bioink:
    A comprehensive review on bioprintable materials Biotechnology
    Advances 35 217–39
    [54] Zhao Y, Li Y, Mao S, Sun W and Yao R 2015 The influence of
    printing parameters on cell survival rate and printability in
    microextrusion-based 3D cell printing technology Biofabrication 7
    045002
    [55] Tirella A, Orsini A, Vozzi G and Ahluwalia A 2009 A phase diagram
    for microfabrication of geometrically controlled hydrogel scaffolds
    Biofabrication 1 045002
    [56] Ribeiro A, Blokzijl M M, Levato R, Visser C W, Castilho M,
    Hennink W E, Vermonden T and Malda J 2017 Assessing bioink shape
    fidelity to aid material development in 3D bioprinting Biofabrication 10 014102
    [57] Ning L, Zhu N, Mohabatpour F, Sarker M D, Schreyer D J and Chen
    X 2019 Bioprinting Schwann cell-laden scaffolds from low-viscosity
    hydrogel compositions J. Mater. Chem. B 7 4538–51
    [58] Zhang S and Wang H 2019 Current Progress in 3D Bioprinting of
    Tissue Analogs SLAS Technology 24 70–8
    [59] Kyle S, Jessop Z M, Al‐Sabah A and Whitaker I S 2017 ‘Printability’
    of Candidate Biomaterials for Extrusion Based 3D Printing:
    State‐of‐the‐Art Adv Healthcare Materials 6 1700264
    [60] Theus A S, Ning L, Hwang B, Gil C, Chen S, Wombwell A, Mehta R
    and Serpooshan V 2020 Bioprintability: Physiomechanical and Biological
    Requirements of Materials for 3D Bioprinting Processes Polymers 12
    2262
    [61] Jeong J, Li C, Kwon Y, Lee J, Kim S H and Yun R 2013 Particle
    shape effect on the viscosity and thermal conductivity of ZnO nanofluids
    International Journal of Refrigeration 36 2233–41
    [62] Zhang Z, Jin Y, Yin J, Xu C, Xiong R, Christensen K, Ringeisen B R,
    Chrisey D B and Huang Y 2018 Evaluation of bioink printability for
    bioprinting applications Applied Physics Reviews 5 041304
    [63] Paxton N, Smolan W, Böck T, Melchels F, Groll J and Jungst T 2017
    Proposal to assess printability of bioinks for extrusion-based bioprinting
    and evaluation of rheological properties governing bioprintability
    Biofabrication 9 044107
    [64] Shih S-J, Tzeng W-L and Kuo W-L 2014 Fabrication of ceria
    particles using glycine precursor nitrate spray pyrolysis Surface and
    Coatings Technology 259 302–9
    [65] Mandrycky C, Wang Z, Kim K and Kim D-H 2016 3D bioprinting
    for engineering complex tissues Biotechnology Advances 34 422–34
    [66] Panwar A and Tan L 2016 Current Status of Bioinks for Micro-
    Extrusion-Based 3D Bioprinting Molecules 21 685
    [67] Hospodiuk M, Dey M, Sosnoski D and Ozbolat I T 2017 The bioink:
    A comprehensive review on bioprintable materials Biotechnology
    Advances 35 217–39
    [68] Chang C C, Boland E D, Williams S K and Hoying J B 2011
    Direct‐write bioprinting three‐dimensional biohybrid systems for future
    regenerative therapies J Biomed Mater Res 98B 160–70
    [69] Gillispie G, Prim P, Copus J, Fisher J, Mikos A G, Yoo J J, Atala A
    and Lee S J 2020 Assessment methodologies for extrusion-based bioink printability Biofabrication 12 022003
    [70] Radoslav Zamborsky, Andrey Svec, Martin Bohac and Miroslav
    Kilian [Infection in Bone Allograft Transplants] Exp Clin Transplant 14
    [71] Sohn H-S and Oh J-K 2019 Review of bone graft and bone
    substitutes with an emphasis on fracture surgeries Biomater Res 23 9
    [72] Lomas R, Chandrasekar A and Board T N 2013 Bone Allograft in the
    UK: Perceptions and Realities HIP International 23 427–33
    [73]Haugen H J, Lyngstadaas S P, Rossi F and Perale G 2019 Bone grafts:
    which is the ideal biomaterial? J Clinic Periodontology 46 92–102
    [74] Larry L. Hench and June Wilson 2013 An Introduction To
    Bioceramics pp 1–8
    [75] Hench L L and Polak J M 2002 Third-Generation Biomedical
    Materials Science 295 1014–7
    [76] Larry L. Hench 1980 Biomaterial pp 826–31
    [77] S.V. Dorozhkin 2018 Current State of Bioceramics J. Ceram. Sci.
    Technol.
    [78] Shinde S S, Patil P S, Gaikwad R S, Mane R S, Pawar B N and
    Rajpure K Y 2010 Influences in high quality zinc oxide films and their
    photoelectrochemical performance Journal of Alloys and Compounds 503
    416–21
    [79] Shinde S S, Korade A P, Bhosale C H and Rajpure K Y 2013
    Influence of tin doping onto structural, morphological, optoelectronic and
    impedance properties of sprayed ZnO thin films Journal of Alloys and
    Compounds 551 688–93
    [80] Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M,
    Shewael I H, Valiev G H and Kianfar E 2021 Nanomaterial by Sol-Gel
    Method: Synthesis and Application ed Z Wang Advances in Materials
    Science and Engineering 2021 1–21
    [81] Shinde S S, Shinde P S, Bhosale C H and Rajpure K Y 2008
    Optoelectronic properties of sprayed transparent and conducting indium
    doped zinc oxide thin films J. Phys. D: Appl. Phys. 41 105109
    [82] Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H and
    Rajpure K Y 2012 Structural, optoelectronic, luminescence and thermal
    properties of Ga-doped zinc oxide thin films Applied Surface Science 258
    9969–76
    [83] Patil S K, Shinde S S and Rajpure K Y 2013 Physical properties of
    spray deposited Ni-doped zinc oxide thin films Ceramics International 39
    3901–7
    [84] Mahadik M A, Shinde S S, Hunge Y M, Mohite V S, Kumbhar S S,
    Moholkar A V, Rajpure K Y and Bhosale C H 2014 UV assisted
    photoelectrocatalytic oxidation of phthalic acid using spray deposited Al
    doped zinc oxide thin films Journal of Alloys and Compounds 611 446–
    51
    [85] Ghosh R and Sarkar R 2016 Synthesis and characterization of
    sintered beta-tricalcium phosphate: A comparative study on the effect of
    preparation route Materials Science and Engineering: C 67 345–52
    [86] Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M,
    Shewael I H, Valiev G H and Kianfar E 2021 Nanomaterial by Sol-Gel
    Method: Synthesis and Application ed Z Wang Advances in Materials
    Science and Engineering 2021 1–21
    [87] Liao Y, Xu Y and Chan Y 2013 Semiconductor nanocrystals in sol–
    gel derived matrices Phys. Chem. Chem. Phys. 15 13694
    [88] Owens G J, Singh R K, Foroutan F, Alqaysi M, Han C-M, Mahapatra
    C, Kim H-W and Knowles J C 2016 Sol–gel based materials for
    biomedical applications Progress in Materials Science 77 1–79
    [89] Feinle A, Elsaesser M S and Hüsing N 2016 Sol–gel synthesis of
    monolithic materials with hierarchical porosity Chem. Soc. Rev. 45 3377–
    99
    [90] Schuck P, Jeantet R, Bhandari B, Chen X D, Perrone Í T, De
    Carvalho A F, Fenelon M and Kelly P 2016 Recent advances in spray
    drying relevant to the dairy industry: A comprehensive critical review
    Drying Technology 34 1773–90
    [91] Ameri M and Maa Y-F 2006 Spray Drying of Biopharmaceuticals:
    Stability and Process Considerations Drying Technology 24 763–8
    [92] Peng T, Zhang X, Huang Y, Zhao Z, Liao Q, Xu J, Huang Z, Zhang J,
    Wu C, Pan X and Wu C 2017 Nanoporous mannitol carrier prepared by
    non-organic solvent spray drying technique to enhance the aerosolization
    performance for dry powder inhalation Sci Rep 7 46517
    [93] Ghosh S K, Roy S K, Kundu B, Datta S and Basu D 2011 Synthesis
    of nano-sized hydroxyapatite powders through solution combustion route
    under different reaction conditions Materials Science and Engineering: B
    176 14–21
    [94] Bhaduri S, Bhaduri S B and Zhou E 1998 Auto ignition synthesis and
    consolidation of Al 2 O 3 –ZrO 2 nano/nano composite powders J. Mater.
    Res. 13 156–65
    [95] Chick L A, Pederson L R, Maupin G D, Bates J L, Thomas L E and Exarhos G J 1990 Glycine precursor-nitrate combustion synthesis of
    oxide ceramic powders Materials Letters 10 6–12
    [96] Purohit R D, Sharma B P, Pillai K T and Tyagi A K 2001 Ultrafine
    ceria powders via glycine precursor-nitrate combustion Materials
    Research Bulletin 36 2711–21
    [97] Siqueira L, Passador F R, Costa M M, Lobo A O and Sousa E 2015
    Influence of the addition of β-TCP on the morphology, thermal properties
    and cell viability of poly (lactic acid) fibers obtained by electrospinning
    Materials Science and Engineering: C 52 135–43
    [98] Pang L, Hu Y, Yan Y, Liu L, Xiong Z, Wei Y and Bai J 2007 Surface
    modification of PLGA/β-TCP scaffold for bone tissue engineering:
    Hybridization with collagen and apatite Surface and Coatings Technology
    201 9549–57
    [99] Ghosh R and Sarkar R 2016 Synthesis and characterization of
    sintered beta-tricalcium phosphate: A comparative study on the effect of
    preparation route Materials Science and Engineering C
    [100]Tanaka H, Chikazawa M, Kandori K and Ishikawa T 2000 Influence
    of thermal treatment on the structure of calcium hydroxyapatite Phys.
    Chem. Chem. Phys. 2 2647–50
    [101]Bulina N V, Makarova S V, Baev S G, Matvienko A A, Gerasimov K
    B, Logutenko O A and Bystrov V S 2021 A Study of Thermal Stability of
    Hydroxyapatite Minerals 11 1310
    [102]M. Descamps, J.C. Hornez and A. Leriche 2007 Effects of powder
    stoichiometry on the sintering of -tricalcium phosphate Journal of the
    European Ceramic Society
    [103]Chung J H Y, Naficy S, Yue Z, Kapsa R, Quigley A, Moulton S E
    and Wallace G G 2013 Bio-ink properties and printability for extrusion
    printing living cells Biomater. Sci. 1 763

    QR CODE