簡易檢索 / 詳目顯示

研究生: 黃從源
Tsung-Yuan Huang
論文名稱: 三相生態混凝土工程性質之研究
Study on Engineering Properties of Cementitious Ternary Eco-Binder Concrete
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 蕭添進
Tien-Chin Hsiao
孫詠明
Yung-Ming Sun
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 143
中文關鍵詞: CFBC灰爐石粉水泥耐久性
外文關鍵詞: CFBC ash, slag, Portland cement, durability
相關次數: 點閱:805下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三相生態混凝土之膠結材係由循環式流化床燃燒(Circulating fluidized bed combustion, CFBC) 飛灰、爐石粉及水泥等三種粉體所組成,CFBC飛灰成分中含有無水石膏與生石灰,遇水後能反應生成鈣礬石與C-S-H膠體,故能提供強度,但過多鈣礬石生成會造成體積膨脹,於混凝土表面產生裂縫,對於混凝土結構耐久性有負面影響,故本研究主要探討三種水膠比(W/B) (0.3, 0.4, 0.5)、四種CFBC飛灰取代爐石粉重量比(15%、25%、35%、45%)及三種水泥取代爐石粉重量比(3%、5%、10%)等試驗變數之三相生態混凝土體積穩定性與工程性質改善機制。
    研究結果顯示:(1)新拌性質:CFBC灰取代爐石粉比例超過25%,隨著CFBC灰取代比例繼續增加,可縮短凝結時間;在三相膠結材中加入水泥同樣會縮短凝結時間。坍度與坍流度數據顯示,CFBC灰取代爐石粉從15%增加至25%、35%、45%,坍度分別損失20.8%、50.0%、81.2%,坍流度分別損失35.8%、52.8%、62.3%,故使用CFBC灰取代爐石粉減少新拌混凝土工作性。(2)工程性質:抗壓強度顯示,CFBC灰取代爐石粉量小於25%,混凝土不論在早期或晚期強度上均明顯增加,加入少於5%水泥,強度可大幅度提升強度。非破壞試驗之動態彈性及剪力模數、超音波試驗隨著CFBC灰取代量增加而遞減,故使用CFBC灰取代爐石粉,會降低混凝土緻密性。 (3) 體積穩定性及耐久性:隨著CFBC灰取代爐石粉比例增加,混凝土膨脹量均明顯提升,降低水膠比及加入水泥均可減緩高CFBC飛灰取代量之混凝土體積膨脹。快速氯離子試驗顯示,隨著CFBC灰比例增加,通電量會增加,加入少量水泥或降低水膠比均減少通電量。潛變數據顯示,隨著CFBC灰取代量提高,混凝土潛變量也跟著提升,加入少量水泥,潛變量會減少。(4)微觀性質方面:SEM觀測結果顯示,加入CFBC灰比例小於25%,C-S-H膠體生成結構較緻密,隨著CFBC灰取代比例增加至45%,鈣礬石生成數量較多,晶體結構較鬆散,加入少量水泥後,有助於增加晶體結構緻密性。


    The ingredients of tenary eco-binder are circulating fluidized bed combustion (CFBC) fly ash, ground granulated blast furnace (GGBF) slag and Portland cement. The CFBC fly ash has the compositions of anhydrite and lime which react with water to produce ettringite (AFt) and calcium silicate hydrate (C-S-H) gel and provide strength. But, a higher amount of ettringite (AFt) causes expansion to result in cracks on concrete surface which have negative impact on the durability of concrete structure. Therefore, the research mainly focuses on the investigation of enhancement mechanism of volumetric stability and engineering properties of tenary eco-binder concrete under the experimental conditons of three water-to-binder (W/B) ratios of 0.3, 0.4 and 0.5, and four replacements of slag with CFBC fly ash by weight of 15%, 25%, 35% and 45%, and three relacements of slag with Portland cement by weight of 3%, 5% and 10%. The results of study show that:(1) Fresh properties. When the replacement ratio of slag with CFBC fly ash exceeds 25%, with the increase of replacement ratio, the resulting setting time gradually reduces. The addtion of Portland cement into tenary eco-bindet also shortens the setting time. The slump and slump flow test results show that replacement ratios of slag with CFBC ash increase from 15% to 25%, 35%, 45%, the slump losses become 20.8%, 50.0% and 81.2%, and slump flow losses become 35.8%, 52.8% and 62.3%, respectively. The replacement of slag with CBFC reduces the workability of fresh concrete. (2) Engineering properties.:Compressive strength of concrete at both early and later ages apparently increase with the increase of replacement ratios of slag with CFBC fly ash up to 25%.The compressive strengths substantially increase with the addition of Portland cement less than 5%. The dynamic elastic and shear moduli and ultrasonic pulse velocity from non-destructive testing decrease with the increases of substitution of CFBC ash which indicates the substitution of CFBC ash from slag tends to reduce the density of concrete. (3) Volumetric stabiblity and durability. As replacement ratios of slag with CFBC ash increase, the expansion of concrete significantly reduce. Both the small water binder ratio and addition of Portland cement can significantly reduce the expansion of concrete with high content of CFBC fly ash.The results of rapid chloride permeability (RCPT) show that the electrical current of RCPT test increases as CFBC ash substitution increase. Both the addition of small amount of Portland cement and reduction of lower water binder ratio can reduce the electrical current of RCPT test. The creep of concrete increases with the increase of CFBC fly ash substitution, and decreases with the addition of small amount of Portland cement. (4) Microcosmic properties. The SEM micrographs indicate that to replace slag with CFBC fly ash by less than 25%, the structure of C-S-H gel becomes dense, as the replacement ratio of slag with CFBC fly ash increase up to 45%, the amount of ettringite (AFt) will increase such that the structure of crystals of hydrate becomes relatively loose. The addition of a small amount of cement, help densify the crystal structure of hydrate.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 1 1-3研究內容與流程 2 第二章 文獻回顧 4 2-1循環式流化床鍋爐技術 4 2-1-1循環式流化床鍋爐技術介紹 4 2-1-2循環式流體化床鍋爐技術原理 4 2-2CFBC灰之種類 5 2-3CFBC灰反應機理 6 2-3-1CFBC灰自膠凝反應機理 6 2-3-2CFBC灰作為鹼激發(活化)劑 7 2-3-3 CFBC灰於水泥中反應 7 2-4CFBC灰對於混凝土影響之相關研究 8 2-4-1對於混和水泥漿凝結時間之影響 8 2-4-2對於混凝土工作性質之影響 9 2-4-3對於混凝土硬固之影響 10 2-4-4對於混凝土耐久性之影響 13 2-5 影養混凝土工程性質之因素 14 2-5-1 養護條件之影響 14 2-5-2 各種水化物生成對於體積穩定性之影響 14 2-5-3 孔隙比之影響 15 2-5-4水膠比參數之影響 16 第三章 實驗計畫 23 3-1試驗內容 23 3-2試驗項目 24 3-3試驗編號說明 24 3-4試驗材料 25 3-5試驗配比設計 26 3-6混凝土拌合流程 29 3-7試驗設備與儀器 30 3-7-1混凝土新拌性質試驗 30 3-7-2混凝土工程性質試驗 31 3-7-3混凝土耐久性質試驗 32 3-7-4微觀性質試驗 33 3-8試驗方法 33 3-8-1材料基本性質試驗 33 3-8-2新拌性質試驗 34 3-8-3工程性質試驗 35 3-8-4耐久性性質試驗 37 3-8-5微觀性質試驗 38 第四章 試驗結果與討論 50 4-1新拌性質 50 4-1-1凝結時間試驗 50 4-1-2坍度流度試驗 51 4-2工程性質 52 4-2-1抗壓強度試驗 53 4-2-2動態彈性與動態剪力模數試驗 57 4-2-3超音波試驗 62 4-2-4體積穩定性試驗 66 4-3耐久性試驗 69 4-3-1快速率離子滲透試驗 69 4-3-2潛變試驗 72 4-4微觀性質試驗 74 4-4-1SEM 74 4-4-2XRD 74 第五章 結論與建議 120 5-1結論 120 5-1-1新拌性質結論 120 5-1-2工程性質結論 120 5-1-3耐久性質結論 121 5-1-4微觀性質結論 121 5-2建議 122 參考文獻 123

    1.Sheng, G., Q. Li, J. Zhai, and F. Li, “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke,” Cement and Concrete Research, Vol.37(6), pp.871-876 (2007).
    2.岳煥玲、原永濤、朱洪峰,「循環流化床鍋爐灰渣綜合利用」,鍋爐技術(Boiler Technology),第37卷,第z1期,第36-41頁(2006)。
    3.錢覺時、鄭洪傳、王智、宋遠明、楊娟,「硫化床燃煤固硫灰渣活性評定方法」,煤炭學報,第31卷,第4期,第506-510頁(2006)。
    4.台塑石化公司,「副產品「混合石膏及副產飛灰」再利用技術及應用推廣規範評估報告」(2005)。
    5.Sheng, G., J. Zhai, Q. Li, F. Li, “Utilization of Fly Ash coming from a CFBC Boiler Co-Firing Coal and Petroleum Coke in Portland Cement,” Fuel, Vol.86(16), pp. 2625-2631 (2007).
    6.Anthony, J., L. Jia, Y. Wu, “CFBC ash hydration studies,” Fuel, Vol. 84, pp. 1393-1397 (2005).
    7.台塑石化股份有限公司,「台塑副產石灰推廣簡介」(2010)。
    8.Lee, C. Y., H. K. Lee, and K. M. Lee, “Strength and Microstructural Characteristics of Chemically Activated Fly Ash–Cement Systems,” Cement and Concrete Research, Vol. 33(3), pp. 425-431 (2003).
    9.Sheng, G., Q. Li, J. Zhai, “Investigation on the hydration of CFBC fly ash,” Fuel, 98, pp61-66 (2012).
    10.Havlica, J., I. Odler, J. Brandštetr, R. Mikulikova, and D. Walther, “Cementitious materials based on fluidised bed coal combustion ashes,” Advances in Cement Research,Vol.16(2), pp. 61-67 (2010)
    11.Anthony, J., L. Jia, Y. Wu, “CFBC ash hydration studies,” Fuel, Vol.84, pp. 1393-1397 (2005).
    12.Shi, C., P. V. Krivenko, and D. Roy, “Alkali-activated Cement and Concrete,” London and New York: Taylor and Francis (2006).
    13.Davidovits, J., “Geoplolymer:man-made rock gel synthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91-139 (1994).
    14.Fu, X., Q. Li, J. Zhai, “The physical–chemical characterization of mechanically-treated CFBC fly ash,” Cement & Concrete Composites, Vol.30(3), pp. 220-226 (2008).
    15.宋遠明、錢覺時、劉景相、王波、王志娟,「SO3對固硫渣膠凝系統水化及性能的影響」,建築材料學報,第16期,第4期,第688-694頁(2013)。
    16.Poon, C. S., S. C. Kou, and Z. S., Lin, “Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4),” Cement and Concrete Research, Vol. 31(6), pp.873-881 (2001).
    17.Zajac M., A. Rossberg, G. L. Saout, and B. Lothenbach, “Influence of limestone and anhydrite on the hydration of Portland”, Cement and Concrete Composites, Vol. 46, pp. 99-108 (2014).
    18.Tzouvalas, G., N. Dermatas, S. Tsimas, “Alternative calcium sulfate-bearing materials as cement retarders Part I. Anhydrite,” Cement and Concrete Research,” Vol. 34, pp. 2113-2118 (2004).
    19.Singh, M., M. Garg, “Activation of gypsum anhydrite-slag mixtures,” Cement and Concrete Research, Vol. 25(2), pp. 332-338 (1995).
    20.王昱智,碩士論文,「CFB 副產石灰為混凝土膠結材料之配比與特性研究」,國立中央大學土木研究所(2008)。
    21.Shen, Y., J. Qian, Z. Zhang, “Investigations of anhydrite in CFBC fly ash as cement retarders,” Construction and Building Materials, Vol. 98, pp.672-678 (2013).
    22.Dung, N. T., “Engineering properties and microstructural examination of cementitious materiails with SCA eco-binder,” National Taiwan University of Science and Techonology Dept civil and construction engineering (2014).
    23.Nguyen, H. A., “Study on engineering properties of cementious Ternary eco-binder,” National Taiwan University of Science and Techonology Dept civil and construction engineering (2014).
    24.Hsu, H. M., A. Cheng, S. J. Chao, “Peuse the bed ash from circulating from fluidized bed combustion on mortar mixture,” Marine Science and Technology, vol. 18(4), pp. 620-628 (2010).
    25.Chi, M., R. Huang, “Effect of circulating fluidized bed combustion ash on the properties of roller compacted,” Cement and Concrete Composite, Vol. 45, pp. 148-156 (2014).
    26.田剛、王紅梅、張凡,「脫硫灰的綜合利用」,能源環境保護學刊,第17卷,第6期,第49-53頁(2003)。
    27.Li, X. G., Q. B. Chen, B. G. Ma, J. Huang, S. W. J, and B. Wu, “Utilization of modified CFBC desulfurization ash as an admixture in blende cements: Physico-mechanical and hydration characteristics,” Fuel, Vol. 102, pp. 674-680 (2012).
    28.Xia, Y., Y. Yan, “Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics,”Construction and Materials, Vol. 47, pp. 1461-1467(2013).
    29.盛廣宏、陳明、程麟、方恆林,「硬石膏對硅酸鹽水泥性的影響」,水泥工程,第5期,第8~11頁(2004)。
    30.Sievert, T., A. Wolter, N. B. Singh, “Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill,” Cement and Concrete Research,” Vol. 35, pp. 623-630 (2005).
    31.夏艷晴、嚴雲、胡志華,「固流化免蒸壓加氣混凝土性能影響因素的研究」,武漢理工大學學報,第34卷,第3期,第25~30頁(2012)。
    32.張峻闔,碩士論文,「CFBC飛灰作為鹼激發劑與標準之符合度及混凝土性質研究」,國立交通大學土木研究所 (2013)。
    33.黃兆龍,「混凝土性質與行為」,詹氏書局(2002)。
    34.黃兆龍,「卜作蘭混凝土使用手冊」,財團法人中興工程顧問社(2007)。
    35.趙文成、黃然、李釗、張大鵬,「混合水泥摻用未水化CFBC灰(副產時灰)使用手冊」,國立交通大學、國立台灣海洋大學、國立中央大學、國立台灣科技大學四校研究團隊(2013)。
    36.鄭一俊,「鋼筋混凝土(一)講義」,國立聯合大學土木與防災工程研究所(2008)。
    37.Brooks, J. J., M. A. Megate Johari, “Effect of metakaolin on creep and shrinkage of concrete,” Cement and Concrete Composite, Vol. 23, pp. 495-502 (2001).
    38.卓世偉、劉娟娟、翁詩涵,「以 ASTM C1202 評估混凝土耐久性之探討」,中華技術學院學報,第26期,(2003)。
    39.Yang, C. C., S. W. Cho, R. Huang, “An electrochemical method for accelerated chloride migration test in cement-based materials”, Materials Chemistry and Physics, Vol.77 (2), pp. 461-469 (2002).
    40.Feldman, R., L. R. Prudencio, G. Chan, “Rapid chloride permeability test on blend cement and other concretes: correlations between charge, initial current and conductivity”, Construction and Buliding Materials, Vol. 13, pp. 149-154 (1999).
    41.Wee, T. H., A. K. Suryavanshi, S. S. Tin, “Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability”, Cement and Concrete Composites, Vol. 21, pp. 59-72 (1999).
    42.江慶堂,博士論文,「混凝土快速氯離子穿透試驗之導電活化能」,國立台灣海洋大學河海工程所(2009)。
    43.CNS 14795 ,「混凝土抗氯離子穿透能力試驗法」,經濟部中央標準局(2011)。

    無法下載圖示 全文公開日期 2019/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE