簡易檢索 / 詳目顯示

研究生: 周毅修
Yi-Hsiu Chou
論文名稱: 緩衝回填材料受乾溼循環作用之膨脹特性研究
A Study of Swelling Characteristics of Buffer and Backfill Materials under Drying-wetting Cycle
指導教授: 鄧福宸
FuChen Teng
口試委員: 阮仲如
Chung-Lu Yuan
林宏達
Horn-Da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 164
中文關鍵詞: 放射性廢棄物緩衝回填材料乾化-溼化循環
外文關鍵詞: radioactive waste, buffer and backfill material, drying-wetting cycle
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 放射性廢棄物最終處置場多重障壁系統中之緩衝回填材料,多以膨潤土與砂混合壓實而成,因膨潤土具有良好的吸水回脹與吸附核種之特性,可膨脹自癒材料間之孔隙與降低水力傳導係數,以減少核種藉由地下水擴散外滲之可能性。在最終處置場的運行期間,緩衝回填材料需克服外在環境的變遷,如地下水位之變化而可能使膨潤土材料由飽和狀轉為不飽和狀態,並對緩衝回填材料之性質產生影響。有鑑於此,本研究以日產膨潤土Kunigel-V1RW與石英砂依不同配比進行混合製成試體,進行單向度膨脹變形率、束制膨脹壓力與水力傳導度等試驗,並針對單向度膨脹變形率試驗與束制膨脹壓力試驗之試體遭受乾化-溼化循環作用後,其膨脹性能之變化進行探討。
    試驗結果顯示,緩衝回填材料歷經第一次溼化與第二次溼化後,其膨脹性能皆產生明顯變化,膨脹性能變化率會隨著乾化階段結束時之含水量的增加而呈線性下降之趨勢,並發現當膨脹性能變化率為零時,所對應之含水量恰接近縮性限度。此現象產生之原因推估為,試體歷經乾化-溼化作用時,黏土顆粒間的組構會產生破壞與重組,使各溼化階段之膨脹性能產生相異之表現,當試體乾化含水量高於縮性限度時,顆粒排列傾向分散結構,使再濕化之膨脹性能變化率下降,而當試體乾化含水量低於縮性限度時,顆粒組成偏向更低度定向性之絮凝結構,使再濕化之膨脹性能變化率上升。


    A mixture of bentonite and sand is considered as a buffer and backfill materials in the multi-barrier system of the radioactive waste disposal facility, because of their high swelling potential which enables to seal the pores within the materials and low hydraulic conductivity which reduces the possibility of nuclear extravasation by groundwater. During the operation of the disposal facility, the buffer and backfill materials need to overcome the changes of the environment, such as the migration of groundwater level which may transform the materials from saturated condition into unsaturated, and the properties of buffer and backfill materials will be affected.
    A mixture of bentonite Kunigel-V1RW, produced in Japan, and quartz sand has been used in this study. The specimens were made from bentonite and quartz sand in various proportions. The laboratory tests including swelling deformation, swelling pressure, and hydraulic conductivity were performed. The influence of drying-wetting cycle on the swelling deformation and swelling pressure of specimens were examined.
    The results showed that the buffer and backfill materials have a marked change on the swelling behavior under the action of drying and wetting cycle. The ratio of change of swelling performance after wetting will decrease linearly with the increment of water content at the end of the drying stage. In addition, when the ratio of change of swelling performance is zero, the corresponding water content is close to the shrinkage limit. The reason causing these results was surmised that the process of drying and wetting leads to the destruction and the reconstruction of the particle structure. When the drying water content of the specimen is higher than the shrinkage limit, the arrangement of particle tends to dispersed structure and makes the re-wetting swelling performance decrease, on the other hand, when the drying water content of the specimen is lower than the shrinkage limit, the arrangement of particle tends to flocculated structure with less orientation and makes the re-wetting swelling performance increase.

    摘要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 第1章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究流程圖 第2章 文獻回顧 2.1 放射性廢棄物的分類 2.1.1 低放射性廢棄物的來源及處理現況 2.1.2 高放射性廢棄物的來源及處理現況 2.1.3 國外低放射性廢棄物最終處置案例 2.2 多重障壁概念介紹 2.3 緩衝與回填材料所需具備之功能 2.4 國外對緩衝回填材料性能設計需求 2.5 膨潤土礦物基本特性 2.5.1 膨潤土簡介 2.5.2 蒙脫石晶體結構 2.5.3 蒙脫石礦物水合結構 2.5.4 膨潤土回脹行為模式 2.6 影響回脹潛能之因素 2.6.1 膨潤土含量與初始乾密度 2.6.2 膨潤土試體初始含水量 2.6.3 膨潤土中蒙脫石含量 2.6.4 乾化-溼化循環 2.7 縮性限度 2.8 飽和黏土之乾縮行為 2.9 國內緩衝回填材料研究現況 第3章 試驗設備、材料與方法 3.1 試驗模具 3.2 數據量測系統 3.2.1 感測器 3.2.2 DAQ裝置 3.2.3 訊號 3.2.4 訊號處理 3.2.5 試驗程式 3.3 試驗材料 3.3.1 膨潤土 3.3.2 石英砂 3.4 膨潤土基本性質試驗 3.5 試體設計與製程 3.5.1 配比設計 3.5.2 試體初始狀態 3.5.3 試體製作 3.6 靜態壓實試驗 3.7 緩衝回填材料之性能試驗 3.7.1 單向度膨脹率試驗 3.7.2 束制膨脹壓力試驗 3.7.3 水力傳導度試驗 3.8 單向度壓密試驗 第4章 試驗結果 4.1 膨潤土與石英砂基本性質試驗結果 4.1.1 膨潤土阿太堡限度試驗結果 4.1.2 膨潤土縮性限度試驗結果 4.1.3 膨潤土自然含水量試驗結果 4.1.4 膨潤土與石英砂比重試驗結果 4.1.5 膨潤土化學成份分析結果 4.1.6 膨潤土陽離子交換能力分析結果 4.2 靜態壓實試驗結果 4.3 單向度膨脹率試驗結果 4.4 束制膨脹壓力試驗結果 4.5 水力傳導度試驗結果 4.6 單向度壓密試驗結果 第5章 綜合討論 5.1 膨潤土材料 5.2 乾化-溼化循環之膨脹特性 5.3 乾化-溼化循環之組構推測 第6章 結論與建議 6.1 結論 6.2 建議 參考資料

    [1] 馬玉瑩、雷廷武、莊曉暉 (2014)。測量土壤顆粒密度的體積置換法。農業工程學報,30(15),130-139。
    [2] 中興工程股份有限公司(2015)。低放射性廢棄物最終處置工程障壁中緩衝回填材料調查評估技術服務工作期末報告。
    [3] 王欣婷(2003)。緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究。國立中央大學土木工程研究所碩士論文,桃園縣。
    [4] 王俊堯(2011)。低放射性廢棄物最終處置回填材料於近場環境下之長期穩定性研究。國立中央大學土木工程研究所碩士論文,桃園縣。
    [5] 台電電力公司(2014)。台電核能月刊384期。台電核能月刊編輯委員會。
    [6] 台電電力公司(2014)。核子燃料中程貯存之安全模式─核一、核二廠乾式貯存場建置計劃。源雜誌,第76-77頁。
    [7] 台灣電力公司(2017)。低放射性廢棄物最終處置技術評估報告。
    [8] 台灣電力公司(2017)。台灣電力公司核能後端營運處蘭嶼貯存場105年度運轉年報。
    [9] 張皓鈞(2015)。低放射性廢棄物最終處置場工程障壁材料於未飽和/飽和環境下之長期穩定性研究。國立中央大學土木工程研究所碩士論文,桃園縣。
    [10] 莊文壽、洪錦雄、董家寶(2000)。深地層處置技術之研究。核研季刊第37期。
    [11] 許俊男(1996)。在模擬地下水中黏土礦物對鍶銫核種的吸附機制研究。放射性物料管理局八十五年度專題研究計劃期末報告。
    [12] 陳文泉(2004)。高放射性廢棄物深層地質處置緩衝材料之回脹行為研究。國立中央大學土木工程研究所博士論文,桃園縣。
    [13] 黃偉慶(2015)。深地層處置設施緩衝材料熱-水力-力學耦合模擬研析。行政院原子能委員會放射性物料管理局。
    [14] 黃偉慶、葉佐仁、盧俊鼎(2001)。放射性廢料處置場回填材料之工程性質。核子科學,第三十八卷,第二期,第107-118頁。
    [15] 劉隆運(2010)。低放射性廢棄物最終處置場回填材料之配方與工程特性研究。國立中央大學土木工程研究所碩士論文,桃園縣。
    [16] 鄭百宏(2014)。以膨潤土製作緩衝回填材料之性能評估。國立臺灣大學土木工程研究所碩士論文,台北市。
    [17] Akcanca, F., & Aytekin, M. (2012). Effect of wetting–drying cycles on swelling behavior of lime stabilized sand–bentonite mixtures. Environmental Earth Sciences, 66(1), 67-74.
    [18] Al-Homoud, A., Basma, A., Husein Malkawi, A., & Al Bashabsheh, M. (1995). Cyclic swelling behavior of clays. Journal of geotechnical engineering, 121(7), 562-565.
    [19] Ashayeri, I., & Yasrebi, S. (2009). Free-swell and swelling pressure of unsaturated compacted clays; experiments and neural networks modeling. Geotechnical and Geological Engineering, 27(1), 137–153.
    [20] Basma, A. A., Al-Homoud, A. S., Malkawi, A. I. H., & Al-Bashabsheh, M. A. (1996). Swelling-shrinkage behavior of natural expansive clays. Applied Clay Science, 11(2-4), 211-227.
    [21] Chertkov, V. (2003). Modelling the shrinkage curve of soil clay pastes. Geoderma, 112(1-2), 71-95.
    [22] Cui, S.-L., Zhang, H.-Y., & Zhang, M. (2012). Swelling characteristics of compacted GMZ bentonite–sand mixtures as a buffer/backfill material in China. Engineering Geology, 141, 65-73.
    [23] Day, R. W. (1994). Swell-shrink behavior of compacted clay. Journal of geotechnical engineering, 120(3), 618-623.
    [24] Huang, W.-H., & Chen, W.-C. (2004). Swelling behavior of a potential buffer material under simulated near field environment. Journal of nuclear science technology, 41(12), 1271-1279.
    [25] IAEA (2009). Classification of radioactive waste: general safety guide. IAEA Safety Standards Series No GSG-1, IAEA, Vienna.
    [26] IPFM (2006). Japan’s spent fuel plutonium manahement challenges. IPFM Research Report No. 2, IPEM.
    [27] Katsuta, T., & Suzuki, T. (2011). Japan's spent fuel and plutonium management challenge. Energy Policy, 39(11), 6827-6841.
    [28] Komine, H. (2004). Simplified evaluation for swelling characteristics of bentonites. Engineering Geology, 71(3-4), 265-279.
    [29] Komine, H., & Ogata, N. (1994). Experimental study on swelling characteristics of compacted bentonite. Canadian geotechnical journal, 31(4), 478-490.
    [30] Komine, H., & Ogata, N. (1999). Experimental study on swelling characteristics of sand-bentonite mixture for nuclear waste disposal. Soils and Foundations, 39(2), 83-97.
    [31] Komine, H., & Ogata, N. (2003). New equations for swelling characteristics of bentonite-based buffer materials. Canadian geotechnical journal, 40(2), 460-475.
    [32] Komine, H., Yasuhara, K., & Murakami, S. (2009). Swelling characteristics of bentonites in artificial seawater. Canadian geotechnical journal, 46(2), 177-189.
    [33] Lutz, J., & Kemper, W. (1959). Intrinsic permeability of clay as affected by clay-water interaction. Soil science, 88(2), 83-90.
    [34] Madsen, F. T., & Müller-Vonmoos, M. (1989). The swelling behaviour of clays. Applied Clay Science, 4(2), 143-156.
    [35] Miller, R. J., & Low, P. F. (1963). Threshold gradient for water flow in clay systems. Soil Science Society of America Journal, 27(6), 605-609.
    [36] Mishra, A. K., Dhawan, S., & Rao, S. M. (2008). Analysis of swelling and shrinkage behavior of compacted clays. Geotechnical and Geological Engineering, 26(3), 289-298.
    [37] Näslund, J.-O., Brandefelt, J., & Liljedahl, L. C. (2013). Climate considerations in long-term safety assessments for nuclear waste repositories. Ambio, 42(4), 393-401.
    [38] Osipov, V., Bik, N. N., & Rumjantseva, N. (1987). Cyclic swelling of clays. Applied Clay Science, 2(4), 363-374.
    [39] Pusch, R. (1980). Swelling pressure of highly compacted bentonite. SKBF/KBS-TR-80-13, Sweden.
    [40] Rao, S., Reddy, B., & Muttharam, M. (2001). The impact of cyclic wetting and drying on the swelling behaviour of stabilized expansive soils. Engineering Geology, 60(1-4), 223-233.
    [41] Reddy, V., & Jagadish, K. (1993). The static compaction of soils. Géotechnique, 43(2), 337-341.
    [42] Shirazi, S., Kazama, H., Salman, F. A., Othman, F., & Akib, S. (2010). Permeability and swelling characteristics of bentonite. International Journal of Physical Sciences, 5(11), 1647-1659.
    [43] SKB. (2010). Climate and climate-related issues for the safety assessment SR-Site. Svensk Ka¨rnbra¨nslehantering AB, SKB TR-10-49, Stockholm, Sweden, Report,.
    [44] SKB. (2010). Design, production and initial state of the backfill and plug in deposition tunnels. Svensk Ka¨rnbra¨nslehantering AB, SKB TR-10-49, Stockholm, Sweden, Report,.
    [45] SKB. (2010). Design, production and initial state of the buffer. Svensk Ka¨rnbra¨nslehantering AB, SKB TR-10-49, Stockholm, Sweden, Report,.
    [46] SKB. (2011). Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project. Svensk Ka¨rnbra¨nslehantering AB, SKB TR-11-01, Stockholm, Sweden, Report.
    [47] Stirk, G. (1954). Some aspects of soil shrinkage and the effect of cracking upon water entry into the soil. Australian Journal of Agricultural Research, 5(2), 279-296.
    [48] Tang, C.-S., Shi, B., Liu, C., Suo, W.-B., & Gao, L. (2011). Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Applied Clay Science, 52(1-2), 69-77.
    [49] Villar, M. V., & Lloret, A. (2008). Influence of dry density and water content on the swelling of a compacted bentonite. Applied Clay Science, 39(1-2), 38-49.
    [50] Yokoyama S, Kuroda M, Tsutsui M, Sato T, Suzuki K, & Enoto H. (2004). A comparisons of bentonite from Kawamukai and Umenokida in Tsukinuno Mine, Yamagata. Journal of the Clay Science Society of Japan 44(2): 45-52.

    無法下載圖示 全文公開日期 2024/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE