簡易檢索 / 詳目顯示

研究生: 艾邦
Bambang - Arip Dwiyantoro
論文名稱: 以除潤方式在微柱表面進行微液滴成形之數值研究
Numerical Study on the Dynamic Behavior of Microdroplet Formation on Micropillar Surface via a Dewetting Process
指導教授: 趙修武
Shiu-Wu Chau
口試委員: 郭真祥
Jen-Shiang Kouh
陳明志
Ming-Jyh Chern
王安邦
An-Bang Wang
陳志敏
Jerry M. Chen
張復瑜
Fuh-Yu Chang
陳品銓
Pin-Chuan Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 135
中文關鍵詞: 動態行為微液滴形成微柱表面除潤過程歐氏數毛細數
外文關鍵詞: dynamic behavior, microdroplet formation, micropillar surface, dewetting process, Ohnesorge number, Capillary number
相關次數: 點閱:393下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文利用數值方法進行除潤過程中液滴在微柱表面成形的動態行為研究。本研究探討微液滴尺寸、微柱幾何尺寸以及除潤過程主要參數之相關性。經由因次分析,液滴的無因次直徑(d)以及形成時間(td*),即以歐氏數(Oh)、毛細數(Ca)、液體的無因次厚度(H)以及接觸角()為除潤過程的主要無因次化參數。數值模擬顯示,微柱截面之形狀和方向在除潤過程中,尤其是在液滴形成之前,對於液面滴跨越微柱時之運動行為具有重要的影響。液滴在微柱上表面的形成時間大小取決於在除潤過程中的無因次化參數。液滴的無因次直徑(d)以及形成時間(td*)會隨著液膜的無因次厚度(H)增加,其中無因次厚度(H)之臨界值為2.5。歐氏數的減小會造成液滴之尺寸增加。減小接觸角可造成微柱上表面大部分產生潤濕狀態,導致大尺寸的微液滴。毛細數增加時,代表增大微柱上表面黏性力,可造成液滴直徑增加以及毛細數達到臨界值。當無因次厚度(H)小於2.5時,臨界毛細數為歐氏數、接觸角以及無因次厚度的函數;當無因次厚度(H)大於2.5時,臨界毛細數則為常數。液滴的無因次直徑(d)以及形成時間(td*)可以用無因次參數的多項式的乘積加以表示,當無因次厚度(H)大於1時,無因次直徑與形成時間趨於定值。


The dynamic behavior of droplet formation on a micropillar surface during a dewetting process is investigated in this study using a numerical approach. The formation of droplet is governed by the recoiling of captive wet region on the top surface of micropillar after the detachment of two bridge-shaped meniscuses from neighboring droplets. In this study, the correlation among the size of microdroplet, the geometrical parameters of micropillars, and the parameters that govern the dewetting process is theoretically investigated. Dimensional analysis is performed to determine independent dimensionless groups to characterize the dimensionless diameter (d) and formation time (td*) of the droplet which are functions of the Ohnesorge number (Oh), the Capillary number (Ca), the dimensionless liquid thickness (H), and the contact angle (). Numerical simulations show that the cross-sectional shape and orientation of the micropillar importantly determine the flow pattern of the dewetting process, and especially the evolution and movement of the meniscus across the micropillar before a microdroplet is formed. The simulation results also reveal that the size of microdroplet on the top surface of micropillar and the formation time of droplet depend on the parameters in the dewetting process. The values of d and td* increase with H, approaching asymptotic values as H tends toward the critical value of 2.5. Reducing the Ohnesorge number increases the diameter of the formed microdroplets. When the contact angle is small, most of the top surface of micropillar is wetted, resulting in the formation of large microdroplets. As the Capillary number increases, the viscous force on the top surface of micropillar also increases, causing growth of the droplet diameter until Ca reaches a critical value. For H < 2.5, the magnitude of critical Capillary number (Cac) depends on Oh, , and H*, while Cac is a constant for H  2.5. The dimensionless droplet diameter (d) and formation time (td*) of droplet can be expressed as products of polynomial functions of the dimensionless group, and both approach an asymptotic solution for H greater than unity.

Abstract........... i 摘要.................. ii Acknowledgements iii Nomenclature.. iv Contents............ viii List of Figures..... xi List of Tables............. xvi Chapter I: INTRODUCTION 1 1.1 Research motivation 1 1.2 Literature review 4 1.2.1 Droplet formation on microfluidic devices 4 1.2.2 Droplet formation by dewetting process 8 1.2.3 Dewetting process guided assembly 12 1.2.4 Experimental procedure and modeling for the generation of microdroplets on micropillar surface by dewetting process 18 Chapter II: MATHEMATICAL MODEL AND NUMERICAL SCHEME 22 2.1 Mathematical model 22 2.2 Numerical scheme 26 2.3 Validation of proposed approach 32 2.4 Simulation parameters and grid dependence 34 Chapter III: THE DYNAMIC BEHAVIOR OF MICRODROPLET FORMATION 43 3.1 The evolution of water front moving across circular micropillar 43 3.2 The evolution of droplet formation process 47 3.3 Dimensional analysis 50 Chapter IV: STUDY ON THE INFLUENCES OF DEWETTING PARAMETERS 52 4.1 The influence of distance between micropillars on microdroplet diameter and its formation time 52 4.2 The influence of cross-sectional shape of micropillar on microdroplet formation 54 4.3 The influence of orientation of micropillar surface on microdroplet formation 59 4.4 The dependence of dewetting parameters on microdroplet diameter 71 4.5 The dependence of dewetting parameters on microdroplet formation time 77 4.6 The dimensionless of microdroplet diameter and its formation time 80 4.7 The influence of the corner curvature of micropillar on microdroplet size 88 4.8 The influence of density ratio on microdroplet size 95 Chapter V: CONCLUSIONS AND FUTURE WORK 97 5.1 Conclusions 97 5.2 Recommendations for future work 99 References........ 100 List of Publications 115

[1] G. M. Whitesides, “The origins and the future of microfluidics”, Nature, vol. 442, no. 7101, pp. 368-373, 2006.
[2] P. S. Dittrich, K. Tachikawa, and A. Manz, “Micro total analysis systems. Latest advancements and trends”, Analytical Chemistry, vol. 78, pp. 3887-3908, 2006.
[3] D. B. Weibel and G. M. Whitesides, “Applications of microfluidics in chemical biology”, Current Opinion in Chemical Biology, vol. 10, pp. 584-591, 2006.
[4] T. Nisisako, T. Torri, and T. Higuchi, “Novel microreactors for functional polymer beads”, Chemical Engineering Journal, vol. 101, pp. 23-29, 2004.
[5] S. Y. The, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics”, Lab on a Chip, vol. 8, no. 2, pp. 198-220, 2008.
[6] D. Belder, “Microfluidics with droplet”, Angewandte Chemie International Edition, vol. 44, no. 23, pp. 3521-3522, 2005.
[7] C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets”, Lab on a Chip, vol. 10, no. 16, pp. 2032-2045, 2010.
[8] H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a Lab-on-a-Chip”, Annual Review of Fluid Mechanics, vol. 36, pp. 381-411, 2004.
[9] T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale”, Reviews of Modern Physics, vol. 77, no. 3, pp. 977-1026, 2005.
[10] E. M. Lucchetta, M. S. Munson and R. F. Ismagilov, “Characterization of the local temperature in space and time around a developing Drosophila embryo in microfluidics device”, Lab on a Chip, vol. 6, no. 2, pp. 185-190, 2006.
[11] M. J. Fuerstman, P. Garstecki, and G. M. Whitesides, “Coding/Decoding and reversibility of droplet trains in microfluidic networks”, Science, vol. 315, pp. 828-832, 2007.
[12] L. F. Cheow, L. Yobas, and D. L. Kwong, “Digital microfluidics: Droplet based logic gates”, Applied Physics Letters, vol. 90, no. 5, 054107, pp. 1-3, 2007.
[13] M. Prakash and N. Gershenfeld, “Microfluidic bubble logic”, Science, vol. 315, no. 5813, pp. 832-835, 2007.
[14] B. Zheng, L. S. Roach, and R. F. Ismagilov, “Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets”, Journal of the American Chemical Society, 2003, vol. 125, pp. 11170-11171.
[15] S. Kaneda and T. Fujii, “Combining droplet-based liquid handling and on-chip capillary electrophoresis with a new sample injection method”, Proceedings of the 7th International Conference on MicroTAS, pp. 1279-1282, 2003.
[16] V. Srinivasan, V. K. Pamula, M. G. Pollack, and R. B. Fair, “Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform”, Proceedings of the 7th International Conference on MicroTAS, pp. 1287-1290, 2003.
[17] T. Nisisako and T. Torii, “Formation of biphasic janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles”, Advanced Materials, vol.19, no. 11, pp. 1489-1493, 2007.
[18] T. Nisisako, S. Okushima, and T. Torii, “Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system”, Soft Matter, vol. 1, pp. 23-27, 2005.
[19] A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device”, Science, vol. 308, no. 5721, pp. 537-541, 2005.
[20] J. H. Xu, S. W. Li, Y. J. Wang, and G. S. Luo, “Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device”, Applied Physics Letters, vol. 88, no. 13, 133506, pp. 1-3, 2006.
[21] J. H. Xu, G. S. Luo, S. W. Li, and G. G. Chen, “Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties”, Lab on a Chip, vol. 6, no. 1, pp. 131-136, 2006.
[22] C. Zhou, P. Yue, and J. J. Feng, “Formation of simple and compound drops in microfluidic devices”, Physics of Fluids, vol. 18, no. 9, 092105, pp. 1-14, 2006.
[23] Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting”, Lab on a Chip, vol. 4, no. 4, pp. 292-298, 2004.
[24] Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidics droplet generation by shear focusing microfluidic device”, Sensor and Actuators B, vol. 114, no. 1, pp. 350-356, 2006.
[25] J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, “Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the Capillary numbers”, Langmuir, vol. 19, no. 22, pp. 9127-9133, 2003.
[26] D. F. Zhang and H. A. Stone, “Drop formation in viscous flows at a vertical capillary tube”, Physics of Fluids, vol. 9, no. 8, pp. 2234-2242, 1997.
[27] G. Duhar and C. Colin, “Dynamics of bubble growth and detachment in a viscous shear flow”, Physics of Fluids, vol. 18, no. 7, 077101, pp. 1-13, 2006.
[28] X. Zhang and O. A. Basaran, “Dynamics of drop formation from a capillary in the presence of an electric field”, Journal of Fluid Mechanics, vol. 326, no. 1, pp. 239-263, 1996.
[29] X. Zhang, “Dynamics of drop formation in viscous flows”, Chemical Engineering Science, vol. 54, no. 12, pp. 1759-1774, 1999.
[30] X. Zhang, “Dynamics of growth and breakup of viscous pendant drops into air”, Journal of Colloid and Interface Science, vol. 212, no. 1, pp. 107-122, 1999.
[31] E. D. Wilkes, S. D. Phillips, and O. A. Basaran, “Computational and experimental analysis of dynamics of drop formation”, Physics of Fluids, vol. 11, no. 12, pp. 3577-3598, 1999.
[32] V. Cristini and Y. C. Tan, “Theory and numerical simulation of droplet dynamics in complex flows – a review”, Lab on a Chip, vol. 4, no. 4, pp. 257-264, 2004.
[33] B. Ambravaneswaran, E. D. Wilkes, and O. A. Basaran, “Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops”, Physics of Fluids, vol. 14, no. 8, pp. 2606-2621, 2002.
[34] S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstechi, D. B. Weibel, I. Gitlin, and G. M. Whitesides, “Generation of monodisperse particles by using microfluidics: control over size, shape, and composition”, Angewandte Chemie International Edition, vol. 44, no. 23, pp. 724-728, 2005.
[35] H. Song, J. D. Tice, and R. F. Ismagilov, “A microfluidic system for controlling reaction networks in time”, Angewandte Chemie International Edition, vol. 42, no. 7, pp. 767-772, 2003.
[36] Z. T. Cygan, J. T. Cabral, K. L. Beers, and E. J. Amis, “Microfluidic platform for the generation of organic-phase microreactors”, Langmuir, vol. 21, pp. 3629-3634, 2005.
[37] B. Zheng, J. D. Tice, L. S. Roach, and R. F. Ismagilov, “A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapordiffusion methods with on-chip X-ray diffraction”, Angewandte Chemie International Edition, vol. 43, pp. 2508-2511, 2004.
[38] M. Takagi, T. Maki, M. Miyahara, and K. Mae, “Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe”, Chemical Engineering of Journal, vol. 101, pp. 269-273, 2004.
[39] T. Yanagishita, Y. Tomabechi, K. Nishio, and H. Masuda, “Preparation of monodisperse SiO2 nanoparticles by membrane emulsification using ideally ordered anodic porous alumina”, Langmuir, vol. 20, pp. 554-555, 2004.
[40] M. Kumemura and T. Korenaga, “Quantitative extraction using flowing nano-liter droplet in microfluidic system”, Analytica Chimica Acta, vol. 558, pp. 75-79, 2006.
[41] M. Sun, W. B. Du, and Q. Fang, “Microfluidic liquid–liquid extraction system based on stopped-flow technique and liquid core waveguide capillary”, Talanta, vol. 70, pp. 392-396, 2006.
[42] A. Amirzadeh and S. Chandra, “Small droplet formation in a pneumatic drop-on demand generator: Experiments and analysis”, Experimental Thermal and Fluid Science, vol. 34, no. 8, pp. 1488-1497, 2010.
[43] A. Amirzadeh, Goghari, and S. Chandra, “Producing droplets smaller than the nozzle diameter by using a pneumatic drop-on-demand droplet generator”, Experiments in Fluids, vol. 44, no. 1, pp. 105-114, 2008.
[44] T. M. Liou, K. C. Shih, S. W. Chau, and S. C. Chen, “Three-dimensional simulations of the droplet formation during the inkjet printing process”, International Communications in Heat and Mass Transfer, vol. 29, no. 8, pp. 1109-1118, 2002.
[45] Y. Higashiyama, S. Tanaka, T. Sugimoto, and K. Asano, “Size distribution of the charged droplets in an axisymmetric shower”, Journal of Electrostatics, vol. 47, no. 3, pp. 183-195, 1999.
[46] K. Yasuda, Y. Bando, S. Yamaguchi, M. Nakamura, A. Oda, and Y. Kawase, “Analysis of concentration characteristics in ultrasonic atomization by droplet diameter distribution”, Ultrasonics Sonochemistry, vol. 12, no. 1, pp. 37-41, 2005.
[47] P. K. Notz and O. A. Basaran, “Dynamics of drop formation in an electric field”, Journal of Colloid and Interface Science, vol. 213, no. 1, pp. 218-237, 1999.
[48] N. E. Pereira and X. Ni, “Droplet size distribution in a continuous oscillatory baffled reactor”, Chemical Engineering Science, vol. 56, no. 3, pp. 735-739, 2001.
[49] P. Garstecki, A. M. Ganan-Calvo, and G. M. Whitesides, “Formation of bubbles and droplets in microfluidic systems”, Bulletin of the polish academy of sciences, vol. 53, no. 4, pp. 361-372, 2005.
[50] A. Theodorakakos, T. Ous, M. Gavaises, J.M. Nouri, N. Nikolopoulos, and H. Yanagihara, “Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells”, Journal of Colloid and Interface Science, vol. 300, no. 2, pp. 673-687, 2006.
[51] Z. Yang and N. L. Abbott, “Spontaneous formation of water droplets at oil-solid interfaces”, Langmuir, vol. 26, no. 17, pp. 13797-13804, 2010.
[52] J. H. Xu, G. S. Luo, G. G. Chen, and J. D. Wang, “Experimental and theoretical approaches on droplet formation from a micrometer screen hole”, Journal of Membrane Science, vol. 266, no. 1-2, pp. 121-131, 2005.
[53] P. Thareja, K. Moritz, and S. S. Velankar, “Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: Particles can increase or decrease drop size”, Rheologica Acta, vol. 49, no. 3, pp. 285-298, 2010.
[54] H. Ulmke, M. Mietschke, and K. Bauckhage, “Piezoelectric single nozzle droplet generator for production of monodisperse droplets of variable diameter”, Chemical Engineering and Technology, vol. 24, no. 1, pp. 69-70, 2001.
[55] G. Tetradis-Meris, D. Rossetti, C. P. de Torres, R. Cao, and G. Lian, R. Janes, “Novel parallel integration of microfluidic device network for emulsion formation”, Industrial and Engineering Chemistry Research, vol. 48, no. 19, pp. 8881-8889, 2009.
[56] T. Nishisako and T. Torii, “Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles”, Lab on a Chip, vol. 8, pp. 287-293, 2008.
[57] I. Kobayashi, S. Mukataka, and M. Nakajima, “CFD simulation and analysis of emulsion droplet formation from straight-through microchannels”, Langmuir, vol. 20, no. 22, pp. 9868-9877, 2004.
[58] I. Kobayashi, G. T. Vladisavljevic, K. Uemura, and M. Nakajima, “CFD analysis of microchannel emulsification: Droplet generation process and size effect of asymmetric straight flow-through microchannels”, Chemical Engineering Science, vol. 66, no. 22, pp. 5556-5565, 2011.
[59] S. M. S. Murshed, S. H. Tan, N. T. Nguyen, T. N. Wong, and L. Yobas, “Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction”, Microfluid Nanofluid, vol. 6, no. 2, pp. 253-259, 2009.
[60] L. Wu, M. Tsutahara, L. S. Kim, and M. Ha, “Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel”, International Journal of Multiphase Flow, vol. 34, no. 9, pp. 852-864, 2008.
[61] J. H. Xu, S. W. Li, J. Tan, and G. S. Luo, “Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping”, Microfluid Nanofluid, vol. 5, no. 6, pp. 711-717, 2008.
[62] S. Sugiura, M. Nakajima, and M. Seki, “Prediction of droplet diameter for microchannel emulsification”, Langmuir, vol. 18, no. 10, pp. 3854-3859, 2002.
[63] A. Gupta and R. Kumar, “Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction”, Microfluid Nanofluid, vol. 8, no. 6, pp. 799-812, 2010.
[64] T. Kawakatsu, Y. Kikuchi, and M. Nakajima, “Regular-sized cell creation in microchannel emulsification by visual micro-processing method”, Journal of the American Oil Chemists’ Society, vol. 74, pp. 317-321, 1997.
[65] T. Kawakatsu, G. Tragardh, Ch. Tragardh, M. Nakajima, N. Oda, and T. Yonemoto, “The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 179, no. 1-3, pp. 29-37, 2001.
[66] I. Kobayashi, M. Nakajima, K. Chun, Y. Kikuchi, and F. Fujita, “Silicon array of elongated through-holes for monodisperse emulsions”, American Institute of Chemical Engineers Journal, vol. 48, pp. 1639-1644, 2002.
[67] S. Sugiura, M. Nakajima, S. Iwamoto, and M. Seki, “Interfacial tension driven monodispersed droplet formation from microfabricated channel array”, Langmuir, vol. 17, pp. 5562-5566, 2001.
[68] T. Kawakatsu, H. Komori, M. Nakajima, Y. Kikuchi, and T. Yonemoto, “Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate”, Journal of Chemical Engineering of Japan, vol. 32, pp. 241-244, 1999.
[69] S. Sugiura, M. Nakajima, T. Oda, M. Satake, and M. Seki, “Effect of interfacial tension on the dynamic behavior of droplet formation during microchannel emulsification”, Journal of Colloid and Interface Science, vol. 269, no. 1, pp. 178-185, 2004.
[70] S. Sugiura, N. Kumazawa, M. Nakajima, and M. Seki, “Characterization of spontaneous transformation-based droplet formation during microchannel emulsification”, The Journal of Physical Chemistry B, vol. 17, pp. 5562-5566, 2002.
[71] S. Sugiura, T. Kuroiwa, T. Kagora, M. Nakajima, S. Sato, S. Mukataka, P. Walde, and S. Ichikawa, “Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device”, Langmuir, vol. 24, pp. 4581-4588, 2008.
[72] E. van der Zwan, R. van der Sman, K. Schroen, and R. Boom, “Lattice Boltzmann simulations of droplet formation during microchannel emulsification”, Journal of Colloid and Interface Science, vol. 335, no. 1, pp. 112-122, 2009.
[73] I. Kobayashi, S. Mukataka, and M. Nakajima, “Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification: Experimental and CFD studies”, Langmuir, vol. 21, pp. 5722-5730, 2005.
[74] A. J. Abrahamse, R. van Lierop, R. G. M. van der Sman, A. van der Padt, and R. M. Boom, “Analysis of droplet formation and interactions during cross-flow membrane emulsification”, Journal of Membrane Science, vol. 204, no. 1-2, pp. 125-137, 2002.
[75] O. Karthaus, S. Mikami, and Y. Hashimoto, “Control of droplet size and spacing in micrometer-sized polymeric dewetting patterns”, Journal of Colloid and Interface Science, vol. 301, no. 2, pp. 703-705, 2006.
[76] L. Xue and Y. Han, “Pattern formation by dewetting of polymer thin film”, Progress in Polymer Science, vol. 36, no. 2, pp. 269-293, 2011.
[77] C. P. R. Dockendorf, T. Y. Choi, and D. Poulikakos, “Size reduction of nanoparticle ink patterns by fluid-assisted dewetting”, Applied Physics Letters, vol. 88, no. 13, 131903, pp. 1-3, 2006.
[78] K. B. Glasner and T. P. Witelski, “Collision versus collapse of droplets in coarsening of dewetting thin films”, Physica D, vol. 209, no. 1-4, pp.80-104, 2005.
[79] N. J. Suematsu, Y. Ogawa, Y. Yamamoto, and T. Yamaguchi, “Dewetting self-assembly of nanoparticles into hexagonal array of nanorings”, Journal of Colloid and Interface Science, vol. 310, no. 2, pp. 648-652, 2007.
[80] M. Oron, T. Kerle, R. Yerushalmi-Rozen, and J. Klein, “Persistent droplet motion in liquid-liquid dewetting”, Physical Review Letters, vol. 92, no. 23, 236104, pp. 1-4, 2004.
[81] H. Park, T. P. Russell, and S. Park, “Spatial control of dewetting: Highly ordered Teflon nanospheres”, Journal of Colloid and Interface Science, vol. 348, no. 2, pp. 416-423, 2010.
[82] X. Fang, M. Pimentel, J. Sokolov, and M. Rafailovich, “Dewetting of the three-phase contact line on solids”, Langmuir, vol. 26, no. 11, pp. 7682-7685, 2010.
[83] Y. Wu, J. D. Fowlkes, P. D. Rack, J. A. Diez, and L. Kondic, “On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: Competing liquid-phase instability and transport mechanisms”, Langmuir, vol. 26, no. 14, pp. 11972-11979, 2010.
[84] C. Luo, R. Xing, Z. Zhang, J. Fu, and Y. Han, “Ordered droplet formation by thin polymer film dewetting on a stripe-patterned substrate”, Journal of Colloid and Interface Science, vol. 269, no. 1, pp. 158-163, 2004.
[85] N. Mulji and S. Chandra, “Rupture and dewetting of water films on solid surfaces”, Journal of Colloid and Interface Science, vol. 352, no. 1, pp. 194-201, 2010.
[86] B. Yoon, H. Acharya, G. Lee, H. Kim, J. Huh, and C. Park, “Nanopatterning of thin polymer films by controlled dewetting on a topographic pre-pattern”, Soft Matter, vol. 4, no. 1, pp. 1476-1472, 2008.
[87] Z. Zhang, Z. Wang, R. Xing, and Y. Han, “How to form regular polymer microstructures by surface-pattern-directed dewetting”, Surface Science, vol. 539, no. 1-3, pp. 129-136, 2003.
[88] C. P. Martin, M. O. Blunt, E. P. Vaujour, A. Stannard, and P. Moriarty, “Controlling pattern formation in nanoparticle assemblies via directed solvent dewetting”, Physical Review Letters, vol. 99, no. 11, 116103, pp. 1-4, 2007.
[89] X. Michalet, R. Ekong, F. Fougerousse, S. Rousseaux, C. Schurra, N. Hornigold, M. van Slegtenhorst, J. Wolfe, S. Povey, J. S. Beckmann, and A. Bensimon, “Dynamic molecular combing: Stretching the whole human genome for high-resolution studies”, Science, vol. 277, no. 5331, pp. 1518-1523, 1997.
[90] A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, and D. Bensimon, “Alignment and sensitive detection of DNA by a moving interface”, Science, vol. 265, no. 5181, pp. 2096-2098, 1994.
[91] J. Guan, P. E. Boukany, O. Hemminger, N. R. Chiou, W. Zha, M. Cavanaugh, and L. J. Lee, “Large laterally ordered nanochannel arrays from DNA combing and imprinting”, Advanced Materials, vol. 22, no. 36, pp. 3997-4001, 2010.
[92] J. Guan, N. Ferrell, L. J. Lee, and D. J. Hansford, “Fabrication of polymeric microparticles for drug delivery by soft lithography”, Biomaterials, vol. 27, no. 21, pp. 4034-4041, 2006.
[93] S. Wang, J. Guan, and L. J. Lee, “Flow-guided assembly processes”, Journal of Chemical Physics and Physical Chemistry, vol. 9, no. 7, pp. 967-973, 2008.
[94] J. Guan and L. J. Lee, “Generating highly ordered DNA nanostrand arrays”, Proceeding of the National Academy of Science of the United States of America, vol. 102, no. 51, pp. 18321-18325, 2005.
[95] J. Guan, N. Ferrell, B. Yu, D. J. Hansford and L. J. Lee, “Simultaneous fabrication of hybrid arrays of nanowires and micro/nanoparticles by dewetting on micropillars”, Soft Matter, vol. 3, no. 11, pp. 1369-1371, 2007.
[96] J. Guan, B. Yu, and L. J. Lee, “Forming highly ordered arrays of functionalized polymer nanowires by dewetting on micropillars”, Advanced Materials, vol. 19, no. 9, pp. 1212-1217, 2007.
[97] Private communications with Prof. Jingjiao Guan at Florida State University.
[98] C. H. Lin, J. Guan, S. W. Chau, S. C. Chen, and L. J. Lee, “Patterning nanowire and micro-/nanoparticle array on micropillar-structured surface: Experiment and modeling”, Biomicrofluidics, vol. 4, no. 1, 034103, pp. 1-15, 2010.
[99] Comet User Manual, Institute of Computational Continuum Mechanics GmbH, Hamburg, 2000.
[100] S. W. Chau, Numerical investigation of free-stream rudder characteristics using a multi-block finite volume method, PhD Thesis (Hamburg: Universitat Hamburg, 1997).
[101] S. Muzaferija, Adaptive finite volume method for flow prediction using unstructured meshes and multigrid approach, PhD Thesis (London: University of London, 1994).
[102] P. K. Khosla and S. G. Rubin, “A diagonally dominant second-order accurate implicit scheme”, Computers and Fluids, vol. 2, no. 2, pp. 207-209, 1974.
[103] M. Perić and J. H. Ferziger, Computational Methods for Fluid Dynamics (Berlin: Springer, 1996).
[104] S. V. Pantankar, Numerical Heat Transfer and Fluid Flow (New York: Hemisphere, 1980).
[105] J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension”, Journal of Computational Physics, vol. 100, no. 2, pp. 335-354, 1992.
[106] S. Muzaferija and M. Perić, Computation of free-surface flows using interface-tracking and interface capturing methods, chap. 2 in O. Mahrenholtz and M. Markiewicz, Nonlinear Water–Wave Interaction, (Southampton: WIT Press, 1999).
[107] M. Maleki, M. Reyssat, F. Restagno, D. Quere, C. Clanet, “Landau-Levich menisci”, Journal of Colloid and Interface Science, vol. 354, no. 1, pp. 359-363, 2011.
[108] Z. Wang, P. Zhang, B. Kirkland, Y. Liu, and J. Guan, “Microcontact printing of polyelectrolytes on PEG using an unmodified PDMS stamp for micropatterning nanoparticles, DNA, proteins and cells”, Soft Matter, vol. 8, no. 29, pp. 7630-7637, 2012.
[109] J. D. Andrade, Surface and Interfacial Aspects of Biomedical Polymers, vol. 1 (New York: Plenium Press, 1985).
[110] P. G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (New York: Springer, 2002).

QR CODE