簡易檢索 / 詳目顯示

研究生: 王偉成
Wei-Cheng Wang
論文名稱: 電解液中添加WS2無機奈米顆粒對AZ31鎂合金的微弧氧化陶瓷膜影響之研究
Effect of WS2 Inorganic Nanoparticles on AZ31 Mg alloy with Micro-arc Oxidation Ceramic Film
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 王朝正
Chaur-Jeng Wang
顏怡文
Yee-Wen Yen
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 111
中文關鍵詞: 鎂合金微弧氧化奈米顆粒IF-WS2
外文關鍵詞: Mg alloy, micro-arc oxidation, nanoparticles, IF-WS2
相關次數: 點閱:217下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎂合金具有良好的物理特性為新一代之綠色材料,卻因為較差的物理、化學特性造成抗腐蝕與耐磨耗性較差,進而嚴重影響鎂合金之未來發展。微弧氧化技術為表面改質新興技術之一,其技術特色在於生成氧化膜於閥金屬(valve metal)如鎂、鋁、鈦之表面,並提升其抗腐蝕和耐磨耗特性。本次研究藉由AZ31 鎂合金在電解液之中添加不同奈米顆粒和氧化時間以達到氧化膜性質變化,其電解液主軸以矽酸鹽
為主。此外使用奈米顆粒以助於提升氧化膜耐磨耗、抗腐蝕等特性。透過SEM、XRD、EDS 和三極電化學試驗等方式以分析不同微弧氧化之表面形貌、鍍膜厚度、抗腐蝕性之差異化。
由實驗得知,隨著微弧氧化時間增長,氧化膜之厚度與孔洞大小也隨之成長。透過添加奈米顆粒使其與氧化膜結合及填補表面之孔洞,進而提升氧化膜之硬度。添加WS2 奈米顆粒之氧化膜具有較優異的硬度,與添加氧化鋁(Al2O3)奈米顆粒之氧化膜比較起來卻無較佳之抗腐蝕能力。氧化膜的厚度、表面形貌、緻密性和組成皆為影響抗腐蝕能力的因素。


Magnesium alloy has good mechanic properties and is considered the green material of the era. However, poor corrosion and wear properties limit its application. Micro-arc oxidation is one of the latest surface treatment technologies forming ceramic-like oxide coating on valve meta such as magnesium, aluminum, and titanium. This coating enhances anti-corrosion and wear ability remarkably.
This study is focusing on the effects of various nanoparticles and the duration time in silicon electrolyte of MAO coatings and of AZ31 magnesium alloy when evaluated. The SEM, XRD, EDS, and polarization curve to exam and analyze the MAO surface morphologies, coating layer, and corrosion properties.
Thickness and pore size of oxidation film increase as the duration extends. The mechanical properties enhanced when added nanoparticles into electrolyte bound with oxidation film and filled up pores on the surface. The results have shown that oxidation film with IF-WS2 has better mechanical properties (hardness), however, compared against oxidation film with Al2O3 nanoparticles it has poor anti-corrosion abilities. Thickness, surface appearance, density, structure and composition of the oxidation layer may affect its anti-corrosion ability.

第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 微弧氧化技術之簡介 2 1.2.2 影響樣化陶瓷膜生成之參數介紹 3 1.2.2.1 電流密度 4 1.2.2.2 電壓 7 1.2.2.3 脈衝頻率 9 1.2.2.4 放電時間 10 1.2.2.5 占空比 11 1.2.2.6 電解液配方 14 1.2.2.7 添加物 17 1.2.3 無機奈米顆粒 20 1.2.4 複合電鍍 20 1.3 文獻整理心得 21 1.4 研究動機與目的 22 第二章 研究理論基礎 23 2.1 鎂合金之簡介 23 2.1.1 鎂之基本性質 23 2.1.2 鎂合金 25 2.1.3 合金元素對鎂合金之影響 26 2.2 鎂的腐蝕電化學 28 2.2.1 腐蝕的定義 29 2.2.2 影響鎂腐蝕的因素 30 2.3 鎂合金表面處理技術 33 2.3.1 機械表面處理 34 2.3.2 化成處理 34 2.3.3 電子束合金化處理 36 2.3.4 雷射合金化處理 37 2.3.5 物理氣相沉積法 37 2.3.6 化學氣相沉積法 39 2.3.7 無電鍍表面處理 39 2.3.8 電鍍 40 2.3.9 陽極處理 40 2.4 微弧氧化技術之介紹 41 2.4.1 微弧氧化技術發展 42 2.4.2 微弧放電工作原理 43 2.4.3 影響膜層特性之控制因子 47 2.5複合電鍍之機制 48 第三章 實驗方法與步驟 50 3.1 實驗流程 50 3.2 試片製備 50 3.3 微弧氧化步驟及參數 51 3.4 陶瓷氧化層宏觀分析 53 3.4.1 粗糙鍍分析 55 3.5 微觀結構觀察分析 57 3.5.1 SEM顯微組織觀察 57 3.5.2 XRD繞射分析 57 3.6 機械性質分析 58 3.6.1 維氏硬度 58 3.6.2 奈米壓痕 59 3.7 腐蝕分析 61 3.7.1 極化曲線分析 61 第四章 結果與討論 63 4.1 電壓與氧化時間曲線 63 4.2 表面粗糙度 66 4.3 微觀結構 69 4.4 成分分析 92 4.4.1 XRD 92 4.5 機械性質分析 94 4.5.1 維氏硬度 94 4.5.2 奈米壓痕 95 4.6 腐蝕分析 99 4.6.1 極化曲線 99 4.7 添加Al2O3與WS2奈米顆粒之結果比較 104 第五章 結論 105 參考文獻 106

[1] J. Paull, “The Rachel Carson Letters and the Making of Silent Spring”, Sage Open, Vol. 3, No. 3, 1-12, 2013
[2] United Nations Environment Program, “Declaration of the United Nations Conference on the Human Environment”, June 5, 1972, Retrieved from: http://legal.un.org/avl/ha/dunche/dunche.html
[3] 陳振華,2004,鎂合金,初版,化學工業出版社,北京
[4] S. Y. Wang, N. C. Si, Y. P. Xia, L. Liu, “Influence of nano-SiC on microstructure and property of MAO coating formed on AZ91D magnesium alloy”, Transactions of Nonferrous Metals Society of China, Vol. 25, No. 6, 1926−1934, 2015
[5] L. R. Krishna, G. Sundararajan, “Aqueous Corrosion Behavior of Micro Arc Oxidation(MAO)-Coated Magnesium Alloys: A Critical Review”, JOM, Vol. 66, No. 6, 1045-1060, 2014
[6] Y. Q. Wang, K. Wu, F. H. Wang, “Effects of Second Phases on Microarc Oxidation Process of Magnesium Base Materials”, Acta Metallurgica Sinica, Vol. 52, No.6, 689-697, 2016
[7] 呂茂辰著,葉明仁譯,2002,鎂及其合金的表面處理工學,初版,傳勝出版社,台北
[8] R. Hussein, D. Northwood, and X. Nie, “The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys”, Surface and Coatings Technology, Vol. 237, 357-368, 2013
[9] O. Khaselev, D. Weiss, J. Yahalom, “Structure and composition of anodic films formed on binary Mg-Al alloys in KOH-aluminate solution under continuous sparking”, Corrosion Science, Vol. 43, No. 7, 1295-1307, 2001
[10] P. Bala Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel, “Effect of current density on the microstructure and corrosion behavior of plasma electrolytic oxidation treated AM50 magnesium alloy”, Applied Surface Science, Vol. 255, No. 7, 4212–4218, 2009
[11] Y. Li, F. Lu, H. L. Li, W. J. Zhu, H. B. Pan, G. X. Tan, Y. H. Lao, C. Y. Ning, G. X. Ni “Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid”, Materials International, Vol. 24, No.5, 516–522, 2014
[12] Y. H. Gu, C. F. Chen, S. Bandopadhyay, C. Y. Ning, Y. J. Zhang, Y. J. Guo, “Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid”, Applied Surface Science, Vol. 258, No. 16, 6116– 6126, 2012
[13] Y. H. Gu, S. Bandopadhyay, C. F. Chen, Y. J. Guo, C. Y. Ning, “Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid”, Journal of Alloys and Compounds, Vol. 543, 109–117, 2012
[14] X. M. Wang, L. Q. Zhu, W. P. Li, H. C. Liu, Y. H. Li, “Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy”, Applied Surface Science, Vol. 255, No.11, 5721–5728, 2009
[15] A. Seyfoori, Sh. Mirdamadi, A. Khavandi, Z. Seyed Rauf, “Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes”, Applied Surface Science, Vol. 261, 92–100, 2012
[16] W. P. Lia, Z. Y. Qian, X. H. Liu, L. Q. Zhu, H. C. Liu, “Investigation of micro-arc oxidation coating growth patterns of aluminum alloy by two-step oxidation method”, Applied Surface Science, Vol. 356, 581–586, 2015
[17] H. Chen, G. H. Lv, G. L. Zhang, H. Pang, X. Q. Wang, H. J. Lee, S. Z. Yang, “Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives”, Surface and Coatings Technology, Vol. 205, No.1, 32-35, 2010
[18] X. J. Cui, R. S. Yang, M. T. Li, “Structure and Properties of a Micro-arc Oxidation Coating Coupled with Nano-Al2O3 Particles on AZ31B Magnesium Alloy”, Journal of Chinese Society for Corrosion and Protection, Vol. 36, No.1, 73-78, 2016
[19] Y. Wang, D. B. Wei, J. Yu, S. C. Di, “Effects of Al2O3 Nano-additive on Performance of Micro-arc Oxidation Coatings Formed on AZ91D Mg Alloy”, Journal of Materials Science & Technology, Vol. 30, No.10, 984-990, 2014
[20] Y. P. Liu, L. H. Duan, S. X. Ma, J. D. Pan, C. E. Cui, Q. Miu, “Influence Of Additions Of Al2O3 Powders In Electrolytical Solution On Microstructure And Corrosion Protection Of Ceramic Coatings Formed On Magnesium Alloy During Micro-Arc Oxidation”, Journal of Chinese Society for Corrosion and Protection, Vol. 27, No.4, 202-205, 2007
[21] A. M. Díez-Pascual, M. Naffakh, “Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature”, Materials Chemistry and Physics, Vol. 141, 979-989, 2013
[22] L. Rapoport, Y. Feldman, M. Homyonfer, H. Cohen, J. Sloan, J. L. Hutchison, R. Tenne, “Inorganic fullerene-like material as additives to lubricants: structure–function relationship”, Wear, Vol. 225–229, Part 2, 975–982, 1999
[23] Y. Feldman, G. L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J. L. Hutchison, and R. Tenne, “Bulk Synthesis of Inorganic Fullerene-like MS2 (M = Mo, W) from the Respective Trioxides and the Reaction Mechanism”, Journal of the American Chemical Society, Vol. 118, No.10, 5362-5367, 1996
[24] Q. Y. Xu, F. Liu, J. T. Lu, G. Kong, C. S. Che, “Microstructure and Performance of Electroplated Fe-nano ZrO2 Composite Coating”, Materials for Mechanical Engineering, 2007, Vol. 31, No. 9, 51-54, 2007
[25] Q. Y. Feng, T. J. Li, Z. T. Zhang, J. Zhang, M. Liu, J. Z. Jin, “Preparation and Properties of Ni/Al2O3 Nano-composite Coatings in High Magnetic Field”, Nanotechnology and Precision Engineering, Vol. 5, No. 3, 215-219, 2007
[26] Y. Rubin, “Organic Approaches to Endohedral Metallofullerenes: Cracking Open or Zipping Up Carbon Shells?”, Chemistry–A European Journal, Vol. 3, No. 7, 1009–1016, 1997
[27] G. Schick, T. Jarrosson, Y. Rubin, “Formation of an Effective Opening within the Fullerene Core of C60 by an Unusual Reaction Sequence”, Angewandte Chemie International Edition, Vol. 38, No. 16, 2360-2363, 1997
[28] Y. Rubin, T. Jarrosson, G. W. Wang, M. D. Bartberger, K. N. Houk, G. Schick, M Saunders, R. J. Cross, “Insertion of helium and molecular hydrogen through the orifice of an open fullerene”, Angewandte Chemie, Vol. 113, No. 8, 1591-1594, 2001
[29] International Magnesium Association, Retrieved from: http://www.intlmag.org/
[30] William F. Smith, Structure and Properties of Engineering Alloys, 2nd Edition, McGraw-Hill Science/Engineering/Math, New York, NY, 1993
[31] M. Avedesian, H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Almere, 1999
[32] ASM Handbook Online, ASM Handbook, ASM International, Almere, 3-43, 1999, Retrieved from: http://products.asminternational.org/hbk/index.jsp
[33] ASM Handbook Online, Alloy Phase Diagrams, ASM International, Almere, 1999, Retrieved from: http://products.asminternational.org/hbk/index.jsp
[34] 許并社、李明照,鎂冶煉與鎂合金熔煉工藝,化學工業出版社,2005年,北京
[35] J.H. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, “A TEM investigation of naturally formed oxide films on pure magnesium”, Corrosion Science, Vol. 39, No. 8, 1397-1414, 1997
[36] 戴光勇,「鎂合金表面處理技術(上)」,材料與社會,第24期, 57, 1988年
[37] 許正勳、林昭宏,偏壓參數對AISI 304不銹鋼電弧披覆TiAlCrN 鍍膜特性之影響,碩士論文,大同大學材料工程學系暨研究所,2008年7月
[38] 宋光鈴,鎂合金腐蝕與防護,化學工業出版社,255-258,2006年1月,北京
[39] 馮忠信,何家文,張建中,「ZMl鎂合金的滾紮形變強化及機理」,機械工程學報,第32卷,第1期,103-108,1996
[40] 馮忠信,張建中,陳新增,「ZMl鎂合金的表面滾壓強化」,金屬學報,第30卷,第9期,422-426,1994
[41] L. Zheng, H. Ni, W. Liang, H. Wang, Y. Wang, “Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys”, Journal of Magnesium and Alloys, Vol. 4, No.2, 115–122, 2016
[42] J. Gary, B. Luan, “Protective coating on magnesium and its alloys-a critical Review”, Journal of Alloys and Compounds, Vol. 336, No. 1-2, 88-113, 2002
[43] 林鈺庭,LZ91鎂合金金透過微弧氧化製程改變表面色澤之研究,碩士論文,國立台灣大學材料科學與工程學系暨研究所,2014年6月
[44] 徐濱士,神奇的表面工程,清華大學出版社,2000年12月,北京
[45] Y. K. Yang,Physical Vapor Deposition, Nano Communication, Vol. 22, No.4, 33-35
[46] 侯軍傳,「化學氣相沉積法合成高結晶度的三元系Cd1-xZnxS奈米線」,物理化學學報,25卷,第4期,724-728,2009年3月
[47] F. M. Lai, C.Y. Tsai, C. H. Lan, C. M. Yang, “Surface Mechanical Properties of Plastic Industrial Components for Electroless Coating Technology”, Journal of Science and Engineering Technology, Vol. 7, No. 4, 19-34, 2011
[48] 陳志源,鐵微粒表面被覆奈米銀層之研究,碩士論文,國立成功大學化學工程學系,2004年6月
[49] 徐宇傑,鎂鋰合金雙極脈衝微弧氧化之表面平整化與抗腐蝕性研究,碩士論文,大同大學材料工程學系暨研究所,2012年7月
[50] X. S. Yin, Z. X. Zhao, J. H. Zhao, “Ash Removing Processes for Al alloy Anodization”, Electroplating & Pollution Control, Vol. 29, No.2, 22-24, 2009
[51] 徐柏榮,利用雙極脈衝電源微弧氧化法探討佔空比和頻率對7075-T6 鋁合金表面膜層之影響,碩士論文,大同大學材料工程學系暨研究所,2009年7月
[52] 鐘時俊、翁榮洲,「微弧氧化表面處理原理與應用」,工業材料雜誌,第194期,176-180,2003年2月
[53] 陳欽聖,LZ91鎂鋰合金雙極脈衝微弧氧化研究,碩士論文,大同大學材料工程學系暨研究所,2009年
[54] F. Mecuson, T. Czerwiec, T. Belmonte, L. Duiardin, A. Viola, G. Henrion, “Diagnostics of an electrolytic microarc process for aluminium alloy oxidation”, Surface and Coatings Technology, Vol. 200, No.1-4, 804-808, 2005
[55] A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, A. Matthews, “Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy”, Surface and Coatings Technology, Vol. 177-178, 779-783, 2004
[56] 陳仲宜,2007年10月,「潛談微弧氧化技術在輕金屬表面之應用」,金屬工業發展中心,產業評析專欄,取自:https://goo.gl/quQiN7
[57] W. B. Xue, C. Wang, Y. L. Li, Z. W. Deng , R. Y. Chen, T. H. Zhang, “Effect of microarc discharge surface treatment on the tensile properties of Al–Cu–Mg alloy”, Materials Letters, Vol. 56, No. 5, 737–743, 2002
[58] Y. M. Wang, B. L. Jiang, T. Q. Lei, L. X. Guo, “Microarc oxidation and spraying graphite duplex coating formed on titanium alloy for antifriction purpose”, Applied Surface Science, Vol. 246, No. 1-3, 214-221, 2005
[59] A. Gunterschulze, H. Betz, “Neue Untersuchungen über die elektrolytische Ventilwirkung”, Zeitschrift für Physik , vol. 68, No. 3-4, 145-161, 1931
[60] A. Guntersehulze, H. Betz, “Die Elektronenstromung in Isolatoren bei extremen Feledstarken”, Zeitschrift für Physik, vol. 91, No.1-2, 70-96, 1934
[61] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A. Matthews, “Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminum alloy”, Surface and Coatings Technology, Vol. 177-178, 779-783,2004
[62] H.X. Li , V.S. Rudnev, X.H. Zheng, T.P. Yarovaya, R.G. Song, “Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation”, Journal of Alloys and Compounds, Vol. 462, 99–102, 2008
[63] G.H. Lv, H. Chen, W.C. Gu, W.R. Feng, L. Li, E.W. Niu, X.H. Zhang, S.Z. Yang, “Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of Alumina PEO coatings”, Current Applied Physics, Vol. 9, 324–328, 2009
[64] 周偉萍,利用微弧氧化技術在鎂合金表面製備黑色氧化膜之研究,碩士論文,大同大學材料工程學系暨研究所,2012年6月
[65] 馮克林,2004 年7月,「輕金屬微電弧電漿電化學技術」,工業材料雜誌,第211期
[66] P. Kurze, “Anodische Oxidation unter Funkenentladungen auf Metalloberflächen in wäßrigen Elektrolyten-Grundlagen und Anwendungen”, Dechema-Monographien, Band 121, VCH-Verlagsgesellschaft, 167–181, 1990
[67] Horst E. Friedrich, Barry L. Mordike, Magnesium Technology Metallurgy, Design Data, Applications, Springer-Verlag GmbH, Heidelberg, 2006
[68] Z. K. He, P. S. Tang, “The Effects of solutions on Micro-Arc Anodizing Ceramic Films”, Materials Protection, Vol. 34, No. 11, 12-13, 2011
[69] R. F. Zhang, T. P. Qu, Q. H. B. Chao, X. B. Nie, W. Wang, “Effects of environmentally friendly electrolytes on properties of anodic coatings formed on magnesium alloys”, The Chinese Journal of Nonferrous Metals, Vol. 18, No. 6, 2008
[70] N. Guglielmi, “Kinetics of the Deposition of Inert Particles from Electrolytic Baths”, Electrochemical Science and Technology, Vol. 119, No. 8, 1009-1012
[71] S. Shawki, Z. Abdel Hamid, “Deposition of High Wear Resistance of Ni-SiC Composite Coatings”, Aircraft Engineering and Aerospace Technology, Vol. 69, No. 5, 432-439, 1997.
[72] N. Masuko, K. Mushihake, “Deposition Kinetics of Alumina Particle during Electroplating of Nickel-Alumina Composites”, Journal of the Metal Finishing Society of Japan, Vol. 31, No. 10, 523-528, 1980
[73] 陳永錄,以微弧氧化法於AZ91D鎂合金上鍍製矽酸鹽及鋯酸鹽氧化膜之特性分析與腐蝕行為,碩士論文,國立台灣科技大學機械工程系,台北,台灣,2014年7月
[74] 張瑞慶,「奈米壓痕技術與應用」,中華民國力學學會,第114期,2006年3月
[75] P. Bala Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel, “Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy”, Applied Surface Science, Vol. 256, No. 12, 4017–4022, 2010
[76] R.F. Zhang, G.Y. Xiong, C.Y. Hu, “Comparison of coating properties obtained by MAO on magnesium alloys in silicate and phytic acid electrolytes”, Current Applied Physics, Vol.10, No. 1, 255–259, 2010
[77] 鮑忠興、劉思謙,2012年10月,近代穿透式電子顯微鏡實務,第二版,滄海書局,台中市
[78] F. Jaspard-Mécuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola, J. Beauvir, “Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process”, Surface & Coatings Technology, Vol. 201, 8677-8682, 2007
[79] C. J. Wang, B. L. Jiang, M. Liu, Y. F. Ge, “Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy”, Journal of Alloys and Compounds, Vol. 621, 53-61, 2015

QR CODE