簡易檢索 / 詳目顯示

研究生: 許迪崴
Ti-Wei Hsu
論文名稱: 基於影像處理的單槓動作參數量測系統
The Horizontal Bar Motion Parameters Measurement System based on Image Processing
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 翁士航
Shi-Hang Weng
阮聖彰
Shanq-Jang Ruan
陳維美
Wei-Mei Chen
林淵翔
Yuan-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 體操單槓影像處理物件追蹤背景分割動作參數分析
外文關鍵詞: Gymnastics, Horizontal bar, Image processing, Object tracking, Background subtraction, Motion parameter analysis
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的單槓體操選手訓練過程依賴教練肉眼觀察選手的動作表現,然而,這種方法無法精確量化和評估選手的動作參數,如滯空高度、滯空時間和旋轉速度等。因此,選手無法全面了解自己的動作表現,進而可能限制了他們能力的提升。為了解決這些限制,本研究旨在開發一種基於影像處理的單槓動作參數量測系統,以提供更精確和全面的動作參數量化評估,可以免除在選手身上安裝穿戴式裝置的問題,也較易於攜帶。
    本論文透過背景分割(Background subtraction)的方式能夠完整的提取體操選手的人物輪廓,以及霍夫轉換(Hough transformation)來對單槓兩側鋼索進行直線檢測,進而對單槓進行定位,通過提取選手輪廓,以及單槓位置後,再透過本論文所開發之動作參數分析演算法來分析選手的滯空高度、滯空時間以及旋轉速度等等動作表現。
    本論文針對不同單槓動作中的飛行高度進行量測,如貓跳(Yamawaki)和特卡契夫(Tkatchev),也針對大迴環(Giant swing)之旋轉速度進行量測。我們對4位受試者共47筆資料進行分析與量測。在滯空高度量測部分,貓跳的平均絕對誤差(MAE)和標準差(SD)分別為3.10公分和2.81公分,特卡契夫的平均絕對誤差和標準差分別為2.01公分和1.28公分。在滯空時間量測部分,貓跳的平均絕對誤差和標準差分別為0.029秒和0.023秒,特卡契夫的平均絕對誤差和標準差分別為0.035秒和0.029秒。在旋轉速度量測部分,大迴環的平均絕對誤差和標準差分別為5.657度/秒以及1.117度/秒。在飛行次數和旋轉圈數計算則是高達100 %的準確度。


    Traditional training methods for horizontal bar gymnasts rely on coaches' visual observation of athletes' performance. However, this approach lacks of precise quantifying and evaluating key motion parameters, such as flight height, flight time and rotation speed. This limitation may hinder athletes' ability to fully understand their performance, potentially impeding their progress. To address these limitations, this thesis aims to develop an image processing-based system for accurately quantifying and evaluating gymnasts' motion parameters, providing a comprehensive assessment without the need for wearable devices on athletes and ensuring ease of portability.
    In this thesis, the proposed system employs background subtraction to extract the gymnast's silhouette from the video, as well as Hough transformation to detect the straight lines of the horizontal bars cables. This allows the system to locate the position of the horizontal bars accurately. After obtaining the gymnast's silhouette and position of the horizontal bar, the developed algorithm analyzes the motion parameters, such as flight height, flight time, and rotation speed.
    This thesis focuses on the measurement of flight height in different horizontal bar exercises, such as the Yamawaki and Tkatchev, as well as the measurement of rotational speed in the Giant swing. We evaluated 47 data from 4 participants. In the part of flight height measurement, the mean absolute error (MAE) and standard deviation (SD) for Yamawaki were 3.10 cm and 2.81 cm, respectively, while for Tkatchev, they were 2.01 cm and 1.28 cm, respectively. In the part of flight time measurement, the mean absolute error and standard deviation for Yamawaki were 0.029 seconds and 0.023 seconds, respectively, while for Tkatchev, they were 0.035 seconds and 0.029 seconds, respectively. Regarding the measurement of rotational speed, the mean absolute error and standard deviation were 5.657 degrees/second and 1.117 degrees/second, respectively. And the calculations for number of flight and rotations achieved 100 % accuracy.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章、緒論 1 1.1動機與目的 1 1.2文獻探討 4 1.2.1慣性感測器用於體操運動 4 1.2.2影像處理用於體操運動 6 1.3本論文的創新與貢獻 8 1.4論文架構 9 第二章、研究背景 10 2.1競技體操動作的定義 10 2.2單槓項目的定義 10 2.3物件追蹤 (Object Tracking) 12 2.4背景分割 (Background Subtraction) 12 2.5 MOG2 (Mixture of Gaussians) 13 2.6形態學 (Morphology) 14 2.7中值濾波器 (Median Filter) 15 2.8霍夫變換 (Hough Transformation) 16 2.9高斯模糊 (Gaussian Blur) 16 第三章、研究方法 18 3.1系統介紹 18 3.1.1硬體架構 18 3.2資料錄製流程 18 3.2.1場地配置 19 3.2.2實驗流程 21 3.2.3實驗對象 22 3.3演算法流程 23 3.4單槓偵測 (Horizontal Bar Detection) 25 3.4.1影像前處理 (Image Preprocessing) 26 3.4.2線段提取 (Lines Extraction) 26 3.4.3單槓定位 (Horizontal Bar Positioning) 27 3.5選手偵測 (Athlete Detection) 30 3.5.1輪廓提取前處理 (Contours Extraction Preprocessing) 31 3.5.2輪廓提取 (Contours Extraction) 32 3.6滯空高度量測 (Flight Height Measurement) 34 3.6.1選手頭部提取 (Athlete Head Extraction) 35 3.6.2滯空高度計算 (Flight Height Calculation) 38 3.7滯空時間量測 (Flight Time Measurement) 42 3.7.1關鍵點距離計算 (Keypoint Distance Calculation) 43 3.7.2離槓偵測 (Off-Bar Detection) 44 3.7.3滯空時間計算 (Flight Time Calculation) 46 3.8旋轉速度量測 (Rotation Speed Measurement) 48 3.8.1定義向量座標 (Define Vectors Coordinate) 49 3.8.2角度計算 (Angle Calculation) 50 3.8.3旋轉速度計算 (Rotation Speed Calculation) 51 3.9圖形化使用者介面 (Graphical User Interface) 52 第四章、實驗結果與討論 53 4.1驗證場地配置 53 4.2誤差衡量指標 54 4.2.1平均絕對誤差 (Mean Absolute Error, MAE) 54 4.2.2標準差 (Standard Deviation, SD) 54 4.3滯空高度量測驗證 56 4.3.1貓跳滯空高度量測驗證 57 4.3.2特卡契夫滯空高度量測驗證 62 4.4滯空時間量測驗證 64 4.4.1貓跳滯空時間量測驗證 66 4.4.2特卡契夫滯空時間量測驗證 68 4.5旋轉速度量測驗證 71 4.6飛行次數和旋轉圈數計算驗證 73 4.7不同背景分割方法在動作參數分析的影響 74 4.7.1探討幀差法在滯空高度量測的影響 74 4.7.2探討幀差法在滯空時間量測的影響 75 4.7.3探討幀差法在旋轉速度量測的影響 76 4.7.4探討幀差法在飛行次數和旋轉圈數計算的影響 76 4.8本論文離線系統運算時間 77 第五章、結論與未來展望 78 參考文獻 79 附錄一 83 附錄二 84

    [1] Chinese Taipei Olympic Committee, “Tang Chia-Hung,” https://www.tpenoc.net/athlete/chia-hung-tang/.(accessed April 17, 2023).
    [2] Federation International Gymnastics. “TANG Chia-Hung,” https://www.gymnastics.sport/site/athletes/bio_detail.php?id=36431.(accessed June. 2, 2023).
    [3] I. Čuk, A. Atiković, and M. Tabaković, “Tkachev salto on high bar,” Science of Gymnastics Journal, vol. 1, no. 1, pp. 5-13, Jan. 2009.
    [4] H. Tsai and W. J. Wang, “Analysis native athletes' Tkatchov skill,” Bulletin of Physical Education, National Society of Physical Education, R.O.C., vol. 28, pp. 293-304, Mar. 2000, doi:10.6222/pej.0028.200003.4029.
    [5] K. Spencer and M. Schuhmann, “The influence of body position on the straddled Tkatchev’s flight phase in men’s horizontal bar,” Journal of Human Sport and Exercise, vol. 12, no. 1, pp. 204-218, May. 2017, doi:10.14198/jhse.2017.121.17.
    [6] A. Arampatzis and G.P. Brüggemann, “Mechanical energetic processes during the giant swing before the Tkatchev exercise,” Journal of Biomechanics, vol. 34, no. 4, Apr. 2001, doi: 10.1016/s0021-9290(00)00212-8. PMID: 11266674.
    [7] M. J. Hiley and M. R. Yeadon, “Maximal dismounts from high bar,” Journal of Biomechanics, vol. 38, no. 11, pp. 2221-2227, Nov. 2005, doi: 10.1016/j.jbiomech.2004.09.025.
    [8] M. J. Hiley, V. V. Zuevsky, and M. R. Yeadon, “Is skilled technique characterized by high or low variability? An analysis of high bar giant circles,” Human Movement Science, vol. 32, no. 1, pp. 171-180, Feb. 2013. doi: 10.1016/j.humov.2012.11.007.
    [9] N. Arakawa, K. Ohtsuka, and A. Yoshio, “Investigation of the athlete’s motion using the gymnastics apparatus’s motion,” Proceedings of the 13th Conference of the International Sports Engineering Association, vol. 49, no. 1, pp. 120, June. 2020, doi:10.3390/proceedings2020049120.
    [10] Y. Zhao et al., “Quantitative evaluation of gymnastics based on multiple MEMS sensors,” in IEEE Sensors Journal, vol. 21, no. 21, pp. 24531-24539, 1 Nov.1. 2021, doi: 10.1109/JSEN.2021.3114758.
    [11] B. Chen, L. Kuang, and W. He, “Simulation of gymnastics performance based on MEMS sensor,” EURASIP Journal on Advances in Signal Processing, vol. 2021, no. 1, pp. 117, Jul. 2021, Art. no. 47, doi:10.1186/s13634-021-00760-4.
    [12] P. Li and J. Zhou, “Tracking of gymnast’s limb movement trajectory based on MEMS inertial sensor,” Applied Bionics and Biomechanics, vol. 2022, Apr. 2022, Art. no. 5292454, doi:10.1155/2022/5292454.v
    [13] M. P. Díaz-Pereira, I. Gómez-Conde, M. Escalona, and D. N. Olivieri, “Automatic recognition and scoring of olympic rhythmic gymnastic movements,” vol. 34, pp. 63-80, Apr. 2014, doi: 10.1016/j.humov.2014.01.001.
    [14] J. Omorczyk, L. Nosiadek, T. Ambroży, and A. Nosiadek, “High-frequency video capture and a computer program with frame-by-frame angle determination functionality as tools that support judging in artistic gymnastics”, Acta of Bioengineering and Biomechanics, vol. 17, no. 3, pp. 85-93, Jan. 2015, doi: 10.5277/ABB-00123-2014-02.
    [15] H. Shimamoto, T. Taki, and J. Hasegawa, “A study of an automated scoring system for the twist skill in horizontal bar of artistic gymnastics”, ECTI Transactions on Computer and Information Technology, vol. 7, no. 1, pp. 1–6, May. 2013, doi: 10.37936/ecti-cit.201371.54345.
    [16] B. Reily, H. Zhang, and W. Hoff, “Real-time gymnast detection and performance analysis with a portable 3D camera”. Computer Vision and Image Understanding, vol. 159, pp. 154-163, Nov. 2016, doi: doi.org/10.1016/j.cviu.2016.11.006.
    [17] C. Schärer et al., “Simple assessment of height and length of flight in complex gymnastic skills: validity and reliability of a two-dimensional video analysis method”, Applied Sciences, vol. 9, no. 19, pp. 3975, Oct. 2019, doi:10.3390/app9193975.
    [18] 中華奧林匹克委員會. “競技體操”, https://www.tpenoc.net/sport/artistic-gymnastics/.(accessed Feb.1, 2023).
    [19] Y. Wu, J. Lim, and M.H. Yang, “Online object tracking: a benchmark,” CVPR '13: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411-2418, June. 2013, doi: 10.1109/CVPR.2013.312.
    [20] OpenCV (4.7.0-dev), “How to use background subtraction methods,” https://docs.opencv.org/4.x/d1/dc5/tutorial_background_subtraction.html.(accessed Mar.14, 2023).
    [21] Z. Zivkovic, “Improved adaptive Gaussian mixture model for background subtraction,” Proceedings of the 17th International Conference on Pattern Recognition, Vol. 2, pp. 28-31, doi: 10.1109/ICPR.2004.1333992.
    [22] Z. Zivkovic and F. van der Heijden, “Efficient adaptive density estimation per image pixel for the task of background subtraction,” Pattern Recognition Letters, vol. 27, no. 7, pp. 773-780, May. 2006. doi: 10.1016/j.patrec.2005.11.005.
    [23] J. Serra, “Image analysis and mathematical morphology,” New York, NY, 1982, doi:10.1002/cyto.990040213.
    [24] R. M. Haralick, S. R. Sternberg, and X. Zhuang, "Image analysis using mathematical morphology", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, pp. 532-550, Jul. 1987. doi: 10.1109/TPAMI.1987.4767941.
    [25] P. V. C. Hough, “Method and means for recognizing complex patterns,” U.S. Patent 30696541962.
    [26] R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11-15, Jan. 1972, doi:10.1145/361237.361242.
    [27] OpenCV (4.7.0-dev), “Hough Line Transform,” https://docs.opencv.org/4.x/d1/dc5/tutorial_background_subtraction.html.(accessed July.24, 2023).
    [28] OpenCV (4.7.0-dev), “Color Space Conversions,” https://docs.opencv.org/4.7.0/d8/d01/group__imgproc__color__conversions.html.(accessed Aug.20, 2023).
    [29] OpenCV (4.7.0-dev), “Smoothing Images,” https://docs.opencv.org/4.7.0/d4/d13/tutorial_py_filtering.html.(accessed July.24, 2023).
    [30] J. Canny, “A computational approach to edge detection”, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi: 10.1109/TPAMI.1986.4767851.
    [31] OpenCV (4.7.0-dev), “Contour Features,” https://docs.opencv.org/4.7.0/dd/d49/tutorial_py_contour_features.html.(accessed July.17, 2023).
    [32] 中華民國體操協會, “競技體操規則,” https://www.ctga.com.tw/WordPress/wp-content/uploads/2019/10/%E7%94%B7%E5%AD%90%E9%AB%94%E6%93%8D%E8%A6%8F%E5%89%87.pdf.(accessed Mar.19, 2023).
    [33] 30 Minutes of everything, “where is your center of gravity?,” https://30minutesofeverything.com/where-is-your-center-of-gravity/.(accessed July.24,2023).
    [34] J. Tsuchiya, K. Murata, and T. Fukunaga, “Kinetic analysis of backward giant swing on parallel bars,” International Journal of Sport and Health Science, vol. 2, pp. 211-221, Aug. 2004, doi: 10.5432/ijshs.2.211.
    [35] J. Charmant and contributors. (2021) “Kinovea (Version 0.9.5),” https://www.kinovea.org.(accessed Aug.6, 2023).

    無法下載圖示 全文公開日期 2028/08/28 (校內網路)
    全文公開日期 2028/08/28 (校外網路)
    全文公開日期 2028/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE