簡易檢索 / 詳目顯示

研究生: Abebaw Abun Amanu
Abebaw Abun Amanu
論文名稱: Fabrication and Characterizations of TMDCs based Polymer Composite and Hybrid Nanomaterials for Gas Sensing Applications
Fabrication and Characterizations of TMDCs based Polymer Composite and Hybrid Nanomaterials for Gas Sensing Applications
指導教授: 洪伯達
Po-Da Hong
口試委員: 洪伯達
Po-Da Hong
Adhimoorthy Saravanan
Adhimoorthy Saravanan
蔡協致
Hsieh-Chih Tsai
陳生明
Sheng-Ming Chen
何國川
Kuo-Chuan Ho
莊偉綜
Wei-Tsung Chuang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 135
中文關鍵詞: 過渡金屬二鹵化物氣體感測器高分子奈米複合材料混合奈米材料氧化鋅金屬氧化物
外文關鍵詞: Transition Metal Dichalcogenide, Gas Sensors, Polymer Nanocomposite, Hybrid Nanomaterials, Zinc Nanorodes, Metal Oxide Compound
相關次數: 點閱:364下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的幾十年中,新型的氣體感測器已被應用於環境分析、汽車產業、醫療應用及室內空氣品質監控等的領域。隨著對環境和人體健康關注提升,對含有NH3,H2,CO,CO2,NO2和SO2的有害氣體的監測需求也隨之增長,其中氨氣(NH3)和氫氣(H2)是普遍存在各種製造過程及使用的化學物質中,因此在這些有害氣體中,其有效偵測相對來說較重要。由於受到材料科學和工程學領域的創新以及對感測器的研發和進步,基於半導體金屬氧化物材料的過渡金屬二鹵化物和導電聚合物的氨氣和氫氣的氣體感測器尺寸大幅的縮小,生產成本和耗能也隨之降低。近年來,由於氨氣和氫氣在各種工業領域是中常用的氣體,又常存在於具有能夠危害人類健康和環境的高毒性和腐蝕性的藥劑,因此對氨氣和氫氣檢測的靈敏度、選擇性和準確率的感測技術需具有高度的要求。氨氣和氫氣感測器的製造方法可以分為機械剝離法或(剝離法,Scotch Tape),溶劑熱法,化學氣相沉積(CVD),超音波處理技術,液態剝離法。

    通過聚甲基丙烯酸甲酯(Polymethyl methacrylate, PMMA)製成的高靈敏度氨氣和氫氣的氣體感測器可有助於MoS2的多層奈米層片和摻雜有氧化鋅(ZnO)的MoSe2奈米層片的剝離。本研究採用超音波處理技術,將過渡金屬二鹵化物與PMMA基材混合,成功製備了PMMA-MoS2奈米高分子複合材料。同樣地,也可藉由超音波處理技術來製備MoSe2-ZNRs奈米混合材料。另外也利用了掃描電子顯微鏡(SEM)、場發射掃描電子顯微鏡(FE-SEM)、傅立葉變換紅外光譜儀(FTIR)、X射線光電子能譜儀(XPS)、拉曼光譜儀、熱重分析(TGA)和X射線繞射(XRD)解析PMMA-MoS2複合材料和MoSe2-ZnO混合奈米材料的結構和形態。高解析場發射穿透式電子顯微鏡(HRTEM)和原子力顯微鏡(AFM)的分析結果表明,在MoS2層板上的PMMA的表面塗層薄且均勻。 除此之外,UV-Vis光譜儀也用來研究其電光(electro-optical)性質。

    從PMMA-MoS2奈米複合材料和MoSe2-ZNRs混合材料得到的氣體偵測性質,表明兩者分別具有優異的靈敏度、選擇性、穩定性、反應時間以及氨氣和氫氣的恢復時間。此外、製備的PMMA-MoS2奈米複合材料和MoSe2-ZNRs混合材料氣體傳感器在對抗NH3,H2,C3H6O和CO2等干擾氣體時也具有優秀的選擇性。研究結果證明,在常溫下藉由超音波處理剝離MoS2和與PMMA和MoSe2-ZNRs組成的奈米複合材料能夠改善對氨氣和氫氣等氣體的監測。與現有MoS2系統的氨氣感測器相比,PMMA-MoS2奈米複合材料具有優異的氣體感測性能。此外、與最近研發的感測器相比,MoSe2-ZNRs雜化納米材料更具優越的氫氣敏感性


    In the last decades, novel gas sensors have been developed and employed in diverse fields for applications such as environmental analysis, automotive industry, medical applications, and indoor air quality controls. Specially, there has been an increasing need for monitoring hazardous gases including NH3, H2, CO, CO2, NO2, and SO2 as concerns over environment and human health. Among these hazardous gas species, ammonia (NH3) and hydrogen (H2) gases detection have attracted considerable attention in the field of gas sensor, which are important because these gases are the most common chemicals manufactured and applied in diverse areas around the world. The development of NH3 and H2 gas sensors based on semiconducting metal oxides, transitional metal dichalcogenides and conducting polymer are driven by innovations in material science and engineering, and scaling down of sensor devices. The advances in scaling down strongly decreased size, production cost and power consumption of ammonia and hydrogen gas sensors. In recent years, sensitive, selective and accurate sensing techniques for ammonia and hydrogen gas detection have been highly required since ammonia and hydrogen are both commonly utilized gases in various industrial sectors and a highly toxic and corrosive agent that can threat human health and environment. Ammonia and hydrogen gases sensors fabricated using different methods such as mechanical (or ‘Scotch Tape’ exfoliation), solvothermal, hydrothermal chemical vapor deposition (CVD), ultra-sonication technique, liquid exfoliation.

    A highly sensitive NH3 and H2 gas sensors fabricated through the poly (methyl meth acrylate) (PMMA) assisted exfoliation of MoS2 based multilayered nanosheets and MoSe2 nanosheet doped at zinc oxide (ZnO), respectively. The PMMA-MoS2 nanocomposites were successfully prepared by using ultra-sonication technique of bulk transitional metal dichalcogenides exfoliated and blended with PMMA matrix. Similarly, MoSe2-ZNRs hybrid nanomaterial prepared by using ultra sonication. The physical-chemical properties of PMMA have assisted MoS2 nanocomposites and MoSe2-ZNRs hybrid materials evaluated by various analytical tools.

    We have also investigated the structure and morphology of the PMMA-MoS2 composite and MoSe2-ZnO hybrids nanomaterial using Scanning Electron Microcopy (SEM), Field Emission Scanning Electron Microscope (FESEM), Fourier Transform Infra-Red (FTIR) Spectrometer, X-ray Photoelectron Spectroscopy (XPS), Raman Spectrometer, Thermogravimetric Analysis (TGA) and X-Ray Diffraction (XRD). High resolution Transmission Electron Microscopy (TEM) and AFM results revealed that uniform and thin surface coating of PMMA on the MoS2 sheets. In addition to this, the electro-optical property will be investigated by using UV-Vis Spectrometer.

    The sensing properties for obtained PMMA-MoS2 nanocomposite and MoSe2-ZNRs hybrid materials exhibited an excellent sensitivity, selectivity, stability, response time and recovery time to NH3 and H2 gases, respectively. Moreover, the fabricated PMMA-MoS2 nanocomposites and MoSe2-ZNRs hybrid gas sensors possessed excellent selectivity against the interfering gases such as NH3, H2, C3H6O, and CO2. The results proved that PMMA-MoS2 composites and MoSe2-ZNRs hybrid material were prepared by ultra-sonication at room temperature, which are promising sensing materials towards NH3.and H2, respectively. The superior gas sensing properties of this present PMMA-MoS2 nanocomposites sustainable compared with the existing MoS2 based NH3 sensors to-date. In addition, MoSe2-ZNRs hybrid nanomaterial superior H2 gas sensor compared to recently studied sensors.

    Index 摘要 Abstract Acknowledgment List of Figures List of Tables List of Schemes Appendix List of units and Abbreviations Chapter 1 Overview 1.1. Motivation of the study 1.2. Objective of the Research 1.3. Organization of this dissertation Chapter 2 2. Literature Review 2.1. Introduction to TMDCs (MoS2 and MoSe2) nanosheets 2.2. Gas sensing Mechanism 2.3. Types of Gas Sensors Chapter 3 3. Experimental and characterization techniques 3.1. Chemicals and material fabrications 3.2. Morphologies and structure characterization techniques 3.3. Gas detector fabrication Chapter 4 4. Significant effect of PMMA on the surface of exfoliated MoS2 nanosheets and their highly enhanced ammonia gas-sensing properties at room temperature. 4.1. Research background 4.2. Results and Discussion 4.2.1. Morphology and Structure Characterization 4.2.2. Ammonia Sensing Properties and Mechanism 4.3. Summery Chapter 5 5. MoSe2 Nanosheets coated ZnO nanorods and their highly enhanced hydrogen gas sensing properties at room temperature via p–n junction formation. 5.1. Research Background 5.2. Results and Discussion 5.2.1. Structural and materials properties of ZNRs-MoSe2 composites. 5.2.2. H2 Sensing Properties and Mechanism 5.3. Summery Chapter 6 6.1. Conclusion and outlook 6.2. Future work References Appendix

    [1] Z. Awang, Gas sensors: a review, Sens Transducers, 168 (2014) 61-75.
    [2] K. Arshak, E. Moore, G. Lyons, J. Harris, S. Clifford, A review of gas sensors employed in electronic nose applications, Sens. Rev. 24 (2004) 181-98.
    [3] N. Yamazoe, Toward innovations of gas sensor technology, Sens. Actuators, B, 108 (2005) 2-14.
    [4] J. Hodgkinson, R. P. Tatam, Optical gas sensing: a review, Meas. Sci. Technol., 24 (2012) 012004.
    [5] J. R. Stetter, J. Li, Amperometric gas sensors a review, Chemical reviews, 108 (2008) 352-66.
    [6] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, et al., Semiconducting metal oxides as sensors for environmentally hazardous gases, Sens. Actuators, B, Chemical, 160 (2011) 580-91.
    [7] X. Liu, T. Ma, N. Pinna, J. Zhang, Two‐dimensional nanostructured materials for gas sensing, Adv. Funct. Mater., 27 (2017) 1702168.
    [8] J. S. Do, S. H. Wang, On the sensitivity of conductimetric acetone gas sensor based on polypyrrole and polyaniline conducting polymers, Sens. Actuators, B, 185 (2013) 39-46.
    [9] M. E. Franke, T. J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?, Small, 2 (2006) 36-50.
    [10] J. W. Yoon, J. S. Kim, T. H. Kim, Y. J. Hong, Y. C. Kang, J. H. Lee, A new strategy for humidity independent oxide chemiresistors: dynamic self‐refreshing of In2O3 sensing surface assisted by layer‐by‐layer coated CeO2 nanoclusters, Small, 12 (2016) 4229-40.
    [11] A. Dey, Semiconductor metal oxide gas sensors: A review, Materials Science and Engineering: B, 229 (2018) 206-17.
    [12] F. Hossein-Babaei, A. Amini, A breakthrough in gas diagnosis with a temperature-modulated generic metal oxide gas sensor, Sens. Actuators, B, 166 (2012) 419-25.
    [13] M. Barzegar, B. Tudu, Two-dimensional materials for gas sensors: from first discovery to future possibilities, Surf. Innovations, 6 (2018) 205-30.
    [14] A. Gupta, T. Sakthivel, S. Seal, Recent development in 2D materials beyond graphene, Prog. Mater. Sci., 73 (2015) 44-126.
    [15] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105 (2010) 136805.
    [16] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS nano, 8 (2014) 4033-41.
    [17] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol., 6 (2011) 147-50.
    [18] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, et al., Emerging photoluminescence in monolayer MoS2, Nano letters, 10 (2010) 1271-5.
    [19] K. F. Mak, J. Shan, T. F. Heinz, Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons, Phys. Rev. Lett., 106 (2011) 046401.
    [20] R. G. Dickinson, L. Pauling, The crystal structure of molybdenite, J. Am. Chem. Soc., 45 (1923) 1466-71.
    [21] J. A. Wilson, A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys., 18 (1969) 193-335.
    [22] R. Frindt, A. Yoffe, Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide, Proc. R. Soc. London, Ser. A, 273 (1963) 69-83.
    [23] P. Joensen, R. Frindt, S. R. Morrison, Single-layer MoS2, Mater. Res. Bull., 21(1986) 457-61.
    [24] R. Tenne, L. Margulis, M.e. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide, Nature, 360 (1992) 444-6.
    [25] Y. Feldman, E. Wasserman, D. Srolovitz, R. Tenne, High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes, Science, 267 (1995) 222-5.
    [26] F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol., 9 (2014) 780-93.
    [27] X. Xu, W. Yao, D. Xiao, T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., 10 (2014) 343-50.
    [28] K. F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, 10 (2016) 216-26.
    [29] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, et al., Graphene-based liquid crystal device, Nano Lett., 8 (2008) 1704-8.
    [30] A. K. Geim, Graphene: status and prospects, science, 324 (2009) 1530-4.
    [31] X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, et al., Graphene‐based materials: synthesis, characterization, properties, and applications, Small, 7 (2011) 1876-902.
    [32] J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and graphene‐based materials for energy storage applications, Small, 10 (2014) 3480-98.
    [33] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Liquid exfoliation of layered materials, Science, 340 (2013) 1226419.
    [34] X. Zhang, Z. Lai, C. Tan, H. Zhang, Solution‐processed two‐dimensional MoS2 nanosheets: preparation, hybridization, and applications, Angew. Chem., Int. Ed., 55 (2016) 8816-38.
    [35] Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition‐metal‐dichalcogenide‐nanosheet‐based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Adv. Mater., 28 (2016) 1917-33.
    [36] Y. Chen, C. Tan, H. Zhang, L. Wang, Two-dimensional graphene analogues for biomedical applications, Chem. Soc. Rev., 44 (2015) 2681-701.
    [37] C. Tan, H. Zhang, Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets, J. Am. Chem. Soc., 137 (2015) 12162-74.
    [38] H. R. Gutiérrez, Two-Dimensional Layered Materials Offering Expanded Applications in Flatland, ACS Appl. Nano Mater., 3 ( 2020) 6134-39.
    [39] Y. Yang, X. Qiu, W. Shi, H. Hou, G. Zou, W. Huang, et al., Controllable Fabrication of Two-Dimensional Layered Transition Metal Oxides through Electrochemical Exfoliation of Non-van der Waals Metals for Rechargeable Zinc-Ion Batteries, Chem. Eng. J., (2020) 127247.
    [40] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater., 2 (2017) 17033.
    [41] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5 (2013) 263-75.
    [42] X. Cao, C. Tan, X. Zhang, W. Zhao, H. Zhang, Solution‐processed two‐dimensional metal dichalcogenide‐based nanomaterials for energy storage and conversion, Adv. Mater., 28 (2016) 6167-96.
    [43] G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, et al., Recent advances in two-dimensional materials beyond graphene, ACS nano, 9 (2015) 11509-39.
    [44] J. Wan, S. D. Lacey, J. Dai, W. Bao, M. S. Fuhrer, L. Hu, Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications, Chem. Soc. Rev., 45 (2016) 6742-65.
    [45] A. B. Kaul, Two-dimensional layered materials: Structure, properties, and prospects for device applications, J. Mater. Res., 29 (2014) 348-61.
    [46] T. P. Nguyen, S. Choi, J. M. Jeon, K. C. Kwon, H. W. Jang, S. Y. Kim, Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction, J. Phys. Chem. C, 120 (2016) 3929-35.
    [47] B. Adilbekova, Y. Lin, E. Yengel, H. Faber, G. Harrison, Y. Firdaus, et al., Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells, J. Mater. Chem. C, 8 (2020) 5259-64.
    [48] Z. Wang, Y. Shen, Y. Ito, Y. Zhang, J. Du, T. Fujita, et al., Synthesizing 1T–1H Two-Phase Mo1–x W x S2 Monolayers by Chemical Vapor Deposition, ACS nano, 12 (2018) 1571-9.
    [49] M. Pumera, A.H. Loo, Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing, TrAC, Trends Anal. Chem., 61 (2014) 49-53.
    [50] J. Zhou, T. Yang, J. Chen, C. Wang, H. Zhang, Y. Shao, Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges, Coord. Chem. Rev., 410 (2020) 213218.
    [51] S. H. Noh, J. Hwang, J. Kang, M. H. Seo, D. Choi, B. Han, Tuning the catalytic activity of heterogeneous two-dimensional transition metal dichalcogenides for hydrogen evolution, J. Mater. Chem. A, 6 (2018) 20005-14.
    [52] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications, Mater.Today, 20 (2017) 116-30.
    [53] C. Gong, Y. Zhang, W. Chen, J. Chu, T. Lei, J. Pu, et al., Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides, Adv. Sci., 4 (2017) 1700231.
    [54] M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A, 3 (2015) 11700-15.
    [55] B. L. Li, J. Wang, H. L. Zou, S. Garaj, C. T. Lim, J. Xie, et al., Low‐dimensional transition metal dichalcogenide nanostructures based sensors, Adv. Funct. Mater., 26 (2016) 7034-56.
    [56] C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, et al., Recent advances in ultrathin two-dimensional nanomaterials, Chemical reviews, 117 (2017) 6225-331.
    [57] C. Tan, Z. Lai, H. Zhang, Ultrathin two‐dimensional multinary layered metal chalcogenide nanomaterials, Adv. Mater., 29 (2017) 1701392.
    [58] H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets, Acc. Chem. Res., 47 (2014) 1067-75.
    [59] Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, et al., 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications, 2D Mater., 3 (2016) 042001.
    [60] P. R. Wu, Z. Liu, Z. L. Cheng, A top-down exfoliation for MoS2 nanosheets based on Li+/Na+-intercalated and shearing synergistic process, Mater. Lett., 248 (2019) 236-40.
    [61] C. Backes, T. M. Higgins, A. Kelly, C. Boland, A. Harvey, D. Hanlon, et al., Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation, Chem. Mater., 29 (2017) 243-55.
    [62] S. Lin, Y. Chui, Y. Li, S.P. Lau, Liquid-phase exfoliation of black phosphorus and its applications, FlatChem, 2 (2017) 15-37.
    [63] C. Gibaja, D. Rodriguez‐San‐Miguel, P. Ares, et al., Few‐layer Antimonene by liquid‐phase exfoliation. Angew. Chem., 128 (2016) 14557-14561
    [64] C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites, Chem. Soc. Rev., 44 (2015) 2713-31.
    [65] N. Chaudhary, M. Khanuja, S. Islam, Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications, Sens. Actuators, A, 277 (2018) 190-8.
    [66] Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song, J. Zeng, et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis, Energy Environ. Sci., 13 (2020) 1593-16.
    [67] Y. Sheng, T. Chen, Y. Lu, R. J. Chang, S. Sinha, J. H. Warner, High-performance WS2 monolayer light-emitting tunneling devices using 2D materials grown by chemical vapor deposition, ACS nano, 13 (2019) 4530-7.
    [68] L. Gao, Flexible device applications of 2D semiconductors, Small, 13 (2017) 1603994.
    [69] U. Ali, K. J. B. A. Karim, N. A. Buang, A review of the properties and applications of poly (methyl methacrylate)(PMMA), Polym. Rev., 55 (2015) 678-705.
    [70] S. Saloum, S. Shaker, R. Hussin, A. Obaid, M. Alkafri, Plasma CVD/etching of Poly (methyl methacrylate) surface: optical and structural characterizations, Mater. Res. Express, 6 (2019) 105371.
    [71] U. Schulz, P. Munzert, N. Kaiser, Plasma surface modification of PMMA for optical applications, J. Adhes. Sci. Technol., 24 (2010) 1283-9.
    [72] Z. Wang, Z. Lu, C. Mahoney, J. Yan, R. Ferebee, D. Luo, et al., Transparent and high refractive index thermoplastic polymer glasses using evaporative ligand exchange of hybrid particle fillers, ACS Appl. Mater. Interfaces, 9 (2017) 7515-22.
    [73] I. A. Choudhury, S. Shirley, Laser cutting of polymeric materials: an experimental investigation, Opt. Laser Technol., 42 (2010) 503-8.
    [74] E. Pawar, A review article on acrylic PMMA, IOSR J Mech Civ Eng, 13 (2016) 1-4.
    [75] B. Adhikari, S. Majumdar, Polymers in sensor applications, Prog. Polym. Sci., 29 (2004) 699-766.
    [76] B. Philip, J. K. Abraham, A. Chandrasekhar, V. K. Varadan, Carbon nanotube/PMMA composite thin films for gas-sensing applications, Smart Mater. Struct., 12 (2003) 935.
    [77] B. M. Szydłowska, A. Graf, A. Kelly, W. J. Blau, M. C. Gather, J. Zaumseil, et al., Preparation of WS2–PMMA composite films for optical applications, J. Mater. Chem. C, 8 (2020) 10805-15.
    [78] Y. Liu, J. Gao, R. Yao, Y. Zhang, T. Zhao, C. Tang, et al., Enhanced energy storage performance in a PVDF/PMMA/TiO2 blending nanodielectric material, Mater. Chem. Phys., 250 (2020) 123155.
    [79] K. Mohan, S. Dolui, B. C. Nath, A. Bora, S. Sharma, S. K. Dolui, A highly stable and efficient quasi solid state dye sensitized solar cell based on Polymethyl methacrylate (PMMA)/Carbon black (CB) polymer gel electrolyte with improved open circuit voltage, Electrochim. Acta, 247 (2017) 216-28.
    [80] S. Ramesh, K. H. Leen, K. Kumutha, A. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66 (2007) 1237-42.
    [81] J. Johnson, D. Jones, The mechanical properties of PMMA and its copolymers with ethyl methacrylate and butyl methacrylate, J. Mater. Sci. 29 (1994) 870-6.
    [82] K. Shin, S. Y. Yang, C. Yang, H. Jeon, C. E. Park, Effects of polar functional groups and roughness topography of polymer gate dielectric layers on pentacene field-effect transistors, Org. Electron., 8 (2007) 336-42.
    [83] Z. Shi, X. Ma, G. Zhao, G. Wang, L. Zhang, B. Li, Fabrication of high porosity Nanocellular polymer foams based on PMMA/PVDF blends, Mater. Des., 195 (2020) 109002.
    [84] S. Shang, L. Li, X. Yang, Y. Wei, Polymethylmethacrylate-carbon nanotubes composites prepared by microemulsion polymerization for gas sensor,Compos. Sci. Technol., 69 (2009) 1156-9.
    [85] X. Wang, K. Kang, K. Godin, S. Fu, S. Chen, E. H. Yang, Effects of solvents and polymer on photoluminescence of transferred WS2 monolayers, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 37 (2019) 052902.
    [86] J. Fan, M. Sun, Nanoplasmonic nanorods/nanowires from single to assembly: Syntheses, Physical Mechanisms and Applications, Chem Rec., 20 (2020) 1043-73.
    [87] K. Choi, T. Kang, S. G. Oh, Preparation of disk shaped ZnO particles using surfactant and their PL properties, Mater. Lett., 75 (2012) 240-3.
    [88] J. Xu, Q. Pan, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators, B, 66 (2000) 277-9.
    [89] L. Loh, J. Briscoe, S. Dunn, Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells, Nanoscale, 6 (2014) 7072-8.
    [90] T. Krishnakumar, A. Kiruthiga, E. Jozwiak, K. Moulaee, G. Neri, Development of ZnO-based sensors for fuel cell cars equipped with ethanol steam-reformer for on-board hydrogen production, Ceram. Int., 46 (2020) 17076-84.
    [91] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S. M. Rezaei Darvishi, ZnO photocatalyst revisited: Effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation, Ind. Eng. Chem. Res., 59 (2020) 15894-911.
    [92] Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter, 16 (2004) R829.
    [93] J. H. Lee, J. Y. Kim, A. Mirzaei, H. W. Kim, S. S. Kim, Significant enhancement of hydrogen-sensing properties of ZnO nanofibers through NiO loading, Nanomaterials, 8 (2018) 902.
    [94] Q. Ma, Y. Fang, Y. Liu, J. Song, X. Fu, H. Li, et al., Facile synthesis of ZnO morphological evolution with tunable growth habits: Achieving superior gas-sensing properties of hemispherical ZnO/Au heterostructures for triethylamine, Phys. E, 106 (2019) 180-6.
    [95] M. Tonezzer, S. Iannotta, H2 sensing properties of two-dimensional zinc oxide nanostructures, Talanta, 122 (2014) 201-8.
    [96] N. D. Hoa, N. V. Duy, S. A. El-Safty, N. V. Hieu, Meso-/nanoporous semiconducting metal oxides for gas sensor applications, J. Nanomater., 2015 (2015).
    [97] V. Modafferi, S. Trocino, A. Donato, G. Panzera, G. Neri, Electrospun V2O5 composite fibers: synthesis, characterization and ammonia sensing properties, Thin Solid Films, 548(2013) 689-94.
    [98] Z. Deng, G. Meng, X. Fang, W. Dong, J. Shao, S. Wang, et al., A novel ammonia gas sensors based on p-type delafossite AgAlO2, J. Alloys Compd., 777 (2019) 52-8.
    [99] H. Li, W. Xie, T. Ye, B. Liu, S. Xiao, C. Wang, et al., Temperature-dependent abnormal and tunable pn response of tungsten oxide–tin oxide based gas sensors, ACS Appl. Mater. Interfaces, 7 (2015) 24887-94.
    [100] B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim, Y.J. Lee, et al., Charge-transfer-based gas sensing using atomic-layer MoS2, Sci. Rep., 5 (2015) 8052.
    [101] F. K. Perkins, A. L. Friedman, E. Cobas, P.M. Campbell, G. G. Jernigan, B. T. Jonker, Chemical vapor sensing with monolayer MoS2, Nano Lett., 13 (2013) 668-73.
    [102] H. Yan, P. Song, S. Zhang, J. Zhang, Z. Yang, Q. Wang, A low temperature gas sensor based on Au-loaded MoS2 hierarchical nanostructures for detecting ammonia, Ceram. Int., 42 (2016) 9327-31.
    [103] D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator, Nano Energy, 65 (2019) 103974.
    [104] B. Wang, H. T. Jin, Z. Q. Zheng, Y. H. Zhou, C. Gao, Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures, Sens. Actuators, B, 244 (2017) 344-56.
    [105] L. Kumar, I. Rawal, A. Kaur, S. Annapoorni, Flexible room temperature ammonia sensor based on polyaniline, Sens. Actuators, B, 240 (2017) 408-16.
    [106] I. H. Kadhim, H. A. Hassan, F. T. Ibrahim, Hydrogen gas sensing based on nanocrystalline SnO2 thin films operating at low temperatures, Int. J. Hydrogen Energy, 45 (2020) 25599-607.
    [107] P. S. Hung, Y. S. Chou, B. H. Huang, I. K. Cheng, G. R. Wang, W. A. Chung, et al., A vertically integrated ZnO-based hydrogen sensor with hierarchical bi-layered inverse opals, Sens. Actuators, B, 325 (2020) 128779.
    [108] M. Mikolasek, P. Ondrejka, F. Chymo, V. Rehacek, M. Predanocy, I. Kostič, et al., Cu2O Based Gas Sensor Prepared by Electrodeposition, IEEE, (2018), 1-4.
    [109] U. T. Nakate, G. H. Lee, R. Ahmad, P. Patil, Y. B. Hahn, Y. Yu, et al., Nano-bitter gourd like structured CuO for enhanced hydrogen gas sensor application, Int. J. Hydrogen Energy, 43 (2018) 22705-14.
    [110] K. Xu, N. Liao, W. Xue, H. Zhou, First principles investigation on MoO3 as room temperature and high temperature hydrogen gas sensor, Int. J. Hydrogen Energy, 45 (2020) 9252-9.
    [111] M. B. Rahmani, M. H. Yaacob, Y. M. Sabri, Hydrogen sensors based on 2D WO3 nanosheets prepared by anodization, Sens. Actuators, B, 251 (2017) 57-64.
    [112] T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films, Anal. Chem., 34 (1962) 1502-3.
    [113] C. Prajapati, S. Pandey, P. Sahay, Sensing of LPG with nanostructured zinc oxide thin films grown by spray pyrolysis technique, Phys. B, 406 (2011) 2684-8.
    [114] J. Ou, M. Yaacob, J. Campbell, M. Breedon, K. Kalantar-Zadeh, W. Wlodarski, H2 sensing performance of optical fiber coated with nano-platelet WO3 film, Sens.Actuators,B,166 (2012) -6.
    [115] D. Zhang, C. Jiang, Y. Zhang, Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route, Sens. Actuators, B, 242 (2017) 15-24.
    [116] F. Rasch, V. Postica, F. Schütt, Y. K. Mishra, A. S. Nia, M. R. Lohe, et al., Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve, Sens. Actuators, B, 320 (2020) 128363.
    [117] S. Zhai, L. Wei, H. E. Karahan, X. Chen, C. Wang, X. Zhang, et al., 2D materials for 1D electrochemical energy storage devices, Energy Storage Materials, 19 (2019) 102-23.
    [118] M. Chhowalla, Z. Liu, H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets, Chem. Soc. Rev., 44 (2015) 2584-6.
    [119] Y. Liu, L. Hao, W. Gao, Z. Wu, Y. Lin, G. Li, et al., Hydrogen gas sensing properties of MoS2/Si heterojunction, Sens. Actuators, B, 211 (2015) 537-43.
    [120] M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, Z. H. Lu, Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies, Adv. Funct. Mater., 22 (2012) 4557- 68.
    [121] D. H. Baek, J. Kim, MoS2 gas sensor functionalized by Pd for the detection of hydrogen, Sens. Actuators, B, 250 (2017) 686-91.
    [122] D. Sarkar, X. Xie, J. Kang, H. Zhang, W. Liu, J. Navarrete, et al., Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing, Nano Lett., 15 (2015) 2852-62.
    [123] C. Balamurugan, D. W. Lee, A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method, Sens. Actuators, B, 192 (2014) 414-22.
    [124] S. Cui, H. Pu, G. Lu, Z. Wen, E. C. Mattson, C. Hirschmugl, et al., Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes, ACS Appl. Mater. Interfaces, 4 (2012) 4898-904.
    [125] N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira, Jr., L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides, Mikrochim. Acta,, 185 (2018) 213.
    [126] G. F. Fine, L. M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors, 10 (2010) 5469-502.
    [127] S. K. Gupta, P. Jha, A. Singh, M. M. Chehimi, D. K. Aswal, Flexible organic semiconductor thin films, J. Mater. Chem. C, 3 (2015) 8468-79.
    [128] A. Gusain, N. J. Joshi, P.V. Varde, D. K. Aswal, Flexible NO gas sensor based on conducting polymerpoly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′ benzothiadiazole)] (PCDTBT), Sens. Actuators, B, 239 (2017) 734-45.
    [129] S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene based gas sensors, Sens. Actuators, B, 218 (2015) 160-83.
    [130] J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration, Phys. Chem. Chem. Phys. P, 19 (2017) 6313-29.
    [131] J. Wu, S. Feng, Z. Li, K. Tao, J. Chu, J. Miao, et al., Boosted sensitivity of graphene gas sensor via nanoporous thin film structures, Sens. Actuators, B, 255 (2018) 1805-13.
    [132] A. Oprea, U. Weimar, Gas sensors based on mass-sensitive transducers part 1: transducers and receptors-basic understanding, Anal. Bioanal. Chem., 411 (2019) 1761-87.
    [133] D. Kwak, M. Wang, K.J. Koski, L. Zhang, H. Sokol, R. Maric, et al., Molybdenum Trioxide (alpha-MoO3) Nanoribbons for Ultrasensitive Ammonia (NH3) Gas Detection: Integrated Experimental and Density Functional Theory Simulation Studies, ACS Appl. Mater. Interfaces, 11 (2019) 10697-706.
    [134] E. L. Brosha, R. Mukundan, F. H. Garzon, YSZ-Based Mixed Potential Sensors for the Detection of Explosives, Electrochem. Solid-State Lett., 11 (2008) J92.
    [135] B. Timmer, W. Olthuis, A. V. D. Berg, Ammonia sensors and their applications—a review, Sens. Actuators, B, 107 (2005) 666-77.
    [136] D. Wu, Q. Peng, S. Wu, G. Wang, L. Deng, H. Tai, et al., A Simple Graphene NH3 Gas Sensor via Laser Direct Writing, Sensors, 18 (2018) 4405.
    [137] M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor, Sens. Actuators, B, 115 (2006) 128-33.
    [138] Q. Wang, X. Dong, Z. Pang, Y. Du, X. Xia, Q. Wei, et al., Ammonia sensing behaviors of TiO2-PANI/PA6 composite nanofibers, Sensors, 12 (2012) 17046-57.
    [139] H. I. Chen, C. Y. Hsiao, W. C. Chen, C. H. Chang, T. C. Chou, I. P. Liu, et al., Characteristics of a Pt/NiO thin film-based ammonia gas sensor, Sens. Actuators, B, 256 (2018) 962-7.
    [140] M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, J. G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity, Sens. Actuators, B, 138 (2009) 168-73.
    [141] A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett., 5 (2005) 667-73.
    [142] S. B. Kulkarni, Y. H. Navale, S. T. Navale, F. J. Stadler, N. S. Ramgir, V. B. Patil, Hybrid polyaniline-WO3 flexible sensor: A room temperature competence towards NH3 gas, Sens. Actuators, B, 288 (2019) 279-88.
    [143] M. D'Arienzo, L. Armelao, C. M. Mari, S. Polizzi, R. Ruffo, R. Scotti, et al., Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters, J. Am. Chem. Soc., 133 (2011) 5296-304.
    [144] D. Abubakar, N. M. Ahmed, S. Mahmud, N. A. Algadri, Properties of NiO nanostructured growth using thermal dry oxidation of nickel metal thin film for hydrogen gas sensing at room temperature, Mater. Res. Express, 4 (2017) 075009.
    [145] W. Guo, M. Fu, C. Zhai, Z. Wang, Hydrothermal synthesis and gas-sensing properties of ultrathin hexagonal ZnO nanosheets, Ceram. Int., 40 (2014) 2295-8.
    [146] L. Lin, T. Liu, Y. Zhang, R. Sun, W. Zeng, Z. Wang, Synthesis of boron nitride nanosheets with a few atomic layers and their gas-sensing performance, Ceram. Int., 42 (2016) 971-5.
    [147] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, et al., Emerging photoluminescence in monolayer MoS2, Nano Lett., 10 (2010) 1271-5.
    [148] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2, Nano Lett., 11 (2011) 5111-6.
    [149] X. Huang, Z. Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications, Chem. Soc. Rev., 42 (2013) 1934-46.
    [150] A. A. Ramanathan, Defect Functionalization of MoS2 nanostructures as toxic gas sensors: A review, IOP Conference Series: Mater. Sci. Eng., 305 (2018) 012001.
    [151] D. Kathiravan, B. R. Huang, A. Saravanan, A. Prasannan, Po-Da Hong, Highly enhanced hydrogen sensing properties of sericin-induced exfoliated MoS2 nanosheets at room temperature, Sens. Actuators, B, 279 (2019) 138-47.
    [152] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chem. Rev., 113 (2013) 3766-98.
    [153] C. N. Rao, H. S. Matte, U. Maitra, Graphene analogues of inorganic layered materials, Angew. Chem., 52 (2013) 13162-85.
    [154] K. Wang, J. Wang, J. Fan, M. Lotya, A. O'Neill, D. Fox, et al., Ultrafast saturable absorption of two-dimensional MoS2 nanosheets, ACS nano, 7 (2013) 9260-7.
    [155] L. Tao, H. Long, B. Zhou, S. F. Yu, S. P. Lau, Y. Chai, et al., Preparation and characterization of few-layer MoS2 nanosheets and their good nonlinear optical responses in the PMMA matrix, Nanoscale, 6 (2014) 9713-9.
    [156] W. Jin, P. C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al-Mahboob, et al., Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett., 111 (2013) 106801.
    [157] K. Zhou, J. Liu, B. Wang, Q. Zhang, Y. Shi, S. Jiang, et al., Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization, Mater.Lett., 126 (2014) 159-61.
    [158] X. T. Cao, L. G. Bach, M. R. Islam, K. T. Lim, A Simple Synthesis, Characterization, and Properties of Poly(methyl methacrylate) Grafted CdTe Nanocrystals, Mol. Cryst. Liq. Cryst., 618 (2015) 111-9.
    [159] M. Lotya, A. Rakovich, J. F. Donegan, J. N. Coleman, Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering, Nanotechnology, 24 (2013) 265703.
    [160] M. Kumar, S. Arun, P. Upadhyaya, G. Pugazhenthi, Properties of PMMA/clay nanocomposites prepared using various compatibilizers, J. Solid Mech., 10 (2015) 7.
    [161] K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. Nicolet, A. Wysmołek, et al., Multiphonon resonant Raman scattering in MoS2, Appl. Phys. Lett., 104 (2014) 092106.
    [162] M. Ye, D. Winslow, D. Zhang, R. Pandey, Y. Yap, Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films, Photonics, 2 (2015) 288-307.
    [163] S. M. Shinde, G. Kalita, M. Tanemura, Fabrication of poly (methyl methacrylate)-MoS2/graphene heterostructure for memory device application, J. Appl. Phys., 116 (2014) 214306.
    [164] H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, et al., MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett., 12 (2012) 3695-700.
    [165] S. Mouri, Y. Miyauchi, K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping, Nano Lett., 13 (2013) 5944-8.
    [166] G. Deokar, D. Vignaud, R. Arenal, P. Louette, J. F. Colomer, Synthesis and characterization of MoS2 nanosheets, Nanotechnology, 27 (2016) 075604.
    [167] E. Mieda, R. Azumi, S. Shimada, M. Tanaka, T. Shimizu, A. Ando, Nanoprobe characterization of MoS2 nanosheets fabricated by Li-intercalation, Jpn. J. Appl. Phys., 54 (2015) 08LB7.
    [168] B. Kulyk, B. Sahraoui, O. Krupka, V. Kapustianyk, V. Rudyk, E. Berdowska, et al., Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films, J.Appl. Phys., 106 (2009) 093102.
    [169] K. C. Bhamu, R. Khenata, S. A. Khan, M. Singh, K. R. Priolkar, Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study, J. Electron. Mater., 45 (2015) 615-23.
    [170] K. Zhou, S. Jiang, C. Bao, L. Song, B. Wang, G. Tang, et al., Preparation of poly (vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties, RSC Adv., 2 (2012) 11695-703.
    [171] K. Bhamu, R. Khenata, S. A. Khan, M. Singh, K. Priolkar, Electronic, optical and thermoelectric properties of 2H-CuAlO2: A first principles study, J. Electron. Mater., 45 (2016) 615-23.
    [172] X. F. Yu, Y. C. Li, J. B. Cheng, Z. B. Liu, Q. Z. Li, W. Z. Li, et al., Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl. Mater. Interfaces, 7 (2015) 13707-13.
    [173] A. Saravanan, B. R. Huang, J. P. Chu, A. Prasannan, H. C. Tsai, Interface engineering of ultrananocrystalline diamond/MoS2-ZnO heterostructures and its highly enhanced hydrogen gas sensing properties, Sens. Actuators, B, 292 (2019) 70-9.
    [174] S. Hans, W. Huang, W. Shi, J. Yu, Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer, Sens. Actuators, B, 203 (2014) 9-16.
    [175] X. S. Jia, C. C. Tang, X. Yan, G. F. Yu, J. T. Li, H. D. Zhang, et al., Flexible polyaniline/poly (methyl methacrylate) composite fibers via electrospinning and in situ polymerization for ammonia gas sensing and strain sensing, J. Nanomater., 2016 (2016).
    [176] Q. Qi, P. P. Wang, J. Zhao, L. L. Feng, L. J. Zhou, R. F. Xuan, et al., SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties, Sens. Actuators, B, 194 (2014) 440-6.
    [177] H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Z. Ying, Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor, Sens. Actuators, B, 129 (2008) 319-26.
    [178] S. Xu, K. Kan, Y. Yang, C. Jiang, J. Gao, L. Jing, et al., Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers, J. Alloys Compd., 618 (2015) 240-7.
    [179] J. Wang, P. Yang, X. Wei, High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals, ACS Appl. Mater. Interfaces, 7 (2015) 3816-24.
    [180] L. Wang, Z. Lou, R. Zhang, T. Zhou, J. Deng, T. Zhang, Hybrid Co3O4/SnO2 core–shell nanospheres as real-time rapid-response sensors for ammonia gas, ACS Appl. Mater. Interfaces, 8 (2016) 6539-45.
    [181] T. Xie, G. Xie, Y. Su, D. Hongfei, Z. Ye, Y. Jiang, Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors, Nanotechnology, 27(2016) 065502.
    [182] P. G. Su, L. Y. Yang, NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room-temperature, Sens. Actuators, B, 223 (2016) 202-8.
    [183] R. S. Ganesh, E. Durgadevi, M. Navaneethan, V. Patil, S. Ponnusamy, C. Muthamizhchelvan, et al., Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres, J. Alloys Compd., 721 (2017) 182-90.
    [184] D. Zhang, C. Jiang, Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film, J. Alloys Compd., 698 (2017) 476-83.
    [185] D. Zhang, Z. Wu, P. Li, X. Zong, G. Dong, Y. Zhang, Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature, Sens. Actuators, B, 258 (2018) 895-905.
    [186] D. Kwak, M. Wang, K. J. Koski, L. Zhang, H. Sokol, R. Maric, et al., Molybdenum trioxide (α-MoO3) nanoribbons for ultrasensitive ammonia (NH3) gas detection: integrated experimental and density functional theory simulation studies, ACS Appl. Mater. Interfaces, 11 (2019) 10697-706.
    [187] Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-cost and flexible printed graphene–PEDOT: PSS gas sensor for ammonia detection, Org. Electron., 15 (2014) 2971-81.
    [188] Y. Han, D. Huang, Y. Ma, G. He, J. Hu, J. Zhang, et al., Design of Hetero-Nanostructures on MoS2 Nanosheets To Boost NO2 Room-Temperature Sensing, ACS Appl. Mater. Interfaces, 10 (2018) 22640-9.
    [189] A. Bag, N. E. Lee, Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review, J. Mater. Chem. C, 7 (2019) 13367-83.
    [190] E. Lee, D. Lee, J. Yoon, Y. Yin, Y. N. Lee, S. Uprety, et al., Enhanced Gas-Sensing Performance of GO/TiO(2) Composite by Photocatalysis, Sensors, 18 (2018) 3334.
    [191] W. Yang, L. Gan, H. Li, T. Zhai, Two-dimensional layered nanomaterials for gas-sensing applications, Inorg. Chem. Front., 3 (2016) 433-51.
    [192] K. Rajkumar, R. T. R. Kumar, Gas Sensors Based on Two-Dimensional Materials and Its Mechanisms, Woodhead Publ. Ser. Electron. Opt. Mater., (2019) 205-58.
    [193] R. V. Bernal, Electrical Properties of Two Dimensional Materials Used in Gas Sensors, Sensors, Sensors, 19 (2019) 1295.
    [194] S. Singh, R. C. Singh, S. Sharma, Room temperature ammonia sensing using MoSe2 nanostructures, Mater. Today: Proc., 28 (2020) 11-13.
    [195] X. Chen, X. Chen, Y. Han, C. Su, M. Zeng, N. Hu, et al., Two-dimensional MoSe2 nanosheets via liquid-phase exfoliation for high-performance room temperature NO2 gas sensors, Nanotechnology, 30 (2019) 445503.
    [196] J. Prasongkit, V. Shukla, A. Grigoriev, R. Ahuja, V. Amornkitbamrung, Ultrahigh-sensitive gas sensors based on doped phosphorene: A first-principles investigation, Appl.Surf.Sci., 497 (2019) 143660.
    [197] D. Zhang, Y.e. Sun, C. Jiang, Y. Zhang, Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route, Sens. Actuators, B, 242 (2017) 15-24.
    [198] K. J. Yoon, S. I. Lee, H. An, J. Kim, J. W. Son, J. H. Lee, et al., Gas transport in hydrogen electrode of solid oxide regenerative fuel cells for power generation and hydrogen production, Int. J. Hydrogen Energy, 39 (2014) 3868-78.
    [199] D. Jung, M. Han, G. S. Lee, Gas sensor using a multi-walled carbon nanotube sheet to detect hydrogen molecules, Sens. Actuators, A, 211 (2014) 51-4.
    [200] S. R. Gottam, C. T. Tsai, L. W. Wang, C. T. Wang, C. C. Lin, S. Y. Chu, Highly sensitive hydrogen gas sensor based on a MoS2-Pt nanoparticle composite, Appl. Surf. Sci., 506 (2020) 144981.
    [201] N. Goel, R. Kumar, S. K. Jain, S. Rajamani, B. Roul, G. Gupta, et al., A high-performance hydrogen sensor based on a reverse-biased MoS2/GaN heterojunction, Nanotechnology, 30 (2019) 314001.
    [202] D. H. Baek, J. Kim, MoS2 gas sensor functionalized by Pd for the detection of hydrogen, Sens. Actuators, B, 250 (2017) 686-91.
    [203] U. T. Nakate, R. Ahmad, P. Patil, Y. T. Yu, Y. B. Hahn, Ultra thin NiO nanosheets for high performance hydrogen gas sensor device, Appl. Surf. Sci., 506 (2020) 144971.
    [204] I. P. Liu, C. H. Chang, Y. M. Huang, K. W. Lin, Hydrogen sensing characteristics of a Pd/Nickel oxide/GaN-based Schottky diode, Int. J. Hydrogen Energy, 44 (2019) 5748-54.
    [205] A. Renitta, K. Vijayalakshmi, High performance hydrogen sensor based on Mn implanted ZnO nanowires array fabricated on ITO substrate, Mater. Sci. Eng., C, 77 (2017) 245-56.
    [206] A. Nandi, P. Nag, D. Panda, S. Dhar, S.M. Hossain, H. Saha, et al., Outstanding Room-Temperature Hydrogen Gas Detection by Plasma-Assisted and Graphene-Functionalized Core-Shell Assembly of SnO2 Nanoburflower, ACS omega, 4 (2019) 11053-65.
    [207] D. Jung, M. Han, G. S. Lee, Fast-response room temperature hydrogen gas sensors using platinum-coated spin-capable carbon nanotubes, ACS Appl. Mater. Interfaces, 7 (2015) 3050-7.
    [208] M. M. Y. A. Alsaif, S. Balendhran, M. R. Field, K. Latham, W. Wlodarski, J. Z. Ou, et al., Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing, Sens. Actuators, B, 192 (2014) 196-204.
    [209] G. Mattoni, S. Yonezawa, Y. Maeno, Diamagnetic-like response from localised heating of a paramagnetic material, Appl. Phys. Lett.,116 (2020) 172405.
    [210] N. Masurkar, N. K. Thangavel, L. M. R. Arava, CVD-Grown MoSe2 Nanoflowers with Dual Active Sites for Efficient Electrochemical Hydrogen Evolution Reaction, ACS Appl. Mater. Interfaces, 10 (2018) 27771-9.
    [211] Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, et al., Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer, Opt. Express, 26 (2018) 34250.
    [212] S. Yuan, S. Zhang, Recent progress on gas sensors based on graphene-like 2D/2D nanocomposites, J. Semicond., 40 (2019) 111608.
    [213] R. Li, K. Jiang, S. Chen, Z. Lou, T. Huang, D. Chen, et al., SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors, RSC Adv., 7 (2017) 52503-9.
    [214] S. Ma, L. Su, L. Jin, J. Su, Y. Jin, A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger, Phys. Lett. A, 383 (2019) 125868.
    [215] J. Liu, N. Yu, Y. Qi, H. Zhao, Q. Yuan, L. Cao, Facile fabrication of p-Cu2O/n-ZnO nanorods arrays heterojunction ultraviolet sensor by aqueous method, Mater. Res. Express, 6 (2018) 015012.
    [216] S. Liu, Y. Zhang, S. Gao, T. Fei, Y. Zhang, X. Zheng, et al., An organometallic chemistry-assisted strategy for modification of zinc oxide nanoparticles by tin oxide nanoparticles: Formation of n-n heterojunction and boosting NO2 sensing properties, J. Colloid Interface Sci., 567 (2020) 328-38.
    [217] E. Comini, D. Zappa, One and two-dimensional metal oxide nanostructures for chemical sensing, (2020) 161-84.
    [218] J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured Materials for Room-Temperature Gas Sensors, Adv. Mater., 28 (2016) 795-831.
    [219] J. Baek, D. Yin, N. Liu, I. Omkaram, C. Jung, H. Im, et al., A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films, Nano Res., 10 (2017) 1861-71.
    [220] J. Zhang, T. Wang, P. Liu, Y. Liu, J. Ma, D. Gao, Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution, Electrochim. Acta, 217 (2016) 181-6.
    [221] R. K. Jha, J. V. D’Costa, N. Sakhuja, N. Bhat, MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection, Sens. Actuators, B, 297 (2019) 126687.
    [222] S. Dhall, K. Sood, N. Jaggi, A hydrogen gas sensor using a Pt-sputtered MWCNTs/ZnO nanostructure, Meas. Sci. Technol., 25 (2014) 085103.
    [223] B. R. Huang, J. C. Lin, Core–shell structure of zinc oxide/indium oxide nanorod based hydrogen sensors, Sens. Actuators, B, 174 (2012) 389-93.
    [224] M. Tonezzer, R. Lacerda, Zinc oxide nanowires on carbon microfiber as flexible gas sensor, Phys. E, 44 (2012) 1098-102.
    [225] A. Saravanan, B. R. Huang, D. Kathiravan, A. Prasannan, Natural Biowaste-Cocoon-Derived Granular Activated Carbon-Coated ZnO Nanorods: A Simple Route To Synthesizing a Core–Shell Structure and Its Highly Enhanced UV and Hydrogen Sensing Properties, ACS Appl. Mater. Interfaces, 9 (2017) 39771-80.
    [226] D. Kathiravan, B. R. Huang, A. Saravanan, Multifunctional sustainable materials: the role of carbon existing protein in the enhanced gas and UV sensing performances of ZnO-based biofilms, J. Mater. Chem. C, 5 (2017) 5239-47.
    [227] D. Kathiravan, B. R. Huang, A. Saravanan, Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors, ACS Appl. Mater. Interfaces, 9 (2017) 12064-72.
    [228] K. Anand, O. Singh, M.P. Singh, J. Kaur, R. C. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite, Sens. Actuators, B, 195 (2014) 409-15.
    [229] M. Kumar, V. S. Bhati, S. Ranwa, J. Singh, Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen, Sci. Rep., 7 (2017) 1-9.
    [230] V. S. Bhati, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Efficient hydrogen sensor based on Ni-doped ZnO nanostructures by RF sputtering, Sens. Actuators, B, 255 (2018) 588-97.
    [231] B. R. Huang, J. P. Chu, A. Saravanan, M. M. Yenesew, N. Bönninghoff, C. H. Chang, High‐Performance Sensor Based on Thin‐Film Metallic Glass/Ultra‐nanocrystalline Diamond/ZnO Nanorod Heterostructures for Detection of Hydrogen Gas at Room Temperature, Chem. Eur. J., 25 (2019) 10385-93.
    [232] A. Gupta, S. S. Pandey, S. Bhattacharya, High aspect ZnO nanostructures based hydrogen sensing, Am. Inst. Phys., Conf. Proc., 1536 (2013), 291-2.

    無法下載圖示 全文公開日期 2026/02/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2026/02/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE