簡易檢索 / 詳目顯示

研究生: 簡孟萱
Meng-Syuan Jian
論文名稱: 以窗口傅立葉轉換研製新穎表面電漿共振 空間相位之生物感測
Novel Spatial Phase Biosensing on Surface Plasmon Resonance through Windowed Fourier Transform
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 張哲菖
Che-Chang Chang
李志堅
Chih-Chien Lee
何文章
Wen-Jeng Ho
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: 表面電漿共振相位空間干涉影像窗口傅立葉轉換微小核糖核酸
外文關鍵詞: Surface Plasmon Resonance, Phase, Spatial Interference, Image, Windowed Fourier Transform, MicroRNA
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

表面電漿共振(Surface Plasmon Resonance, SPR)是一種發生在金屬與介電物質介面上的物理現象,被廣泛的應用於生物檢測與免疫組織化學上,可有效的分析檢測物質之微小濃度折射率變化。傳統SPR影像感測器的影像分析是採用五步還原演算法解相,擷取多張不同相位的干涉條紋影像做演算法計算。然而,於擷取影像的過程中,系統容易受到環境因素在光能量擷取上產生誤差,不僅解相步驟較為繁瑣費時,也無法即時監測結果。

本論文提出一具新穎性方法以增強表面電漿共振空間相位生醫感測系統。由於低同調光源干涉具有穩定性與易分辨性,因此我們利用低同調干涉之寬頻光源做為參考基準點,同時並聯雷射光源來做生醫感測,以解決傳統SPR相位感測器無法即時監測與判讀之問題。不同於傳統SPR感測器使用繁瑣的五步還原演算法,此論文運用窗口傅立葉轉換技術解析感測端光場的相位資訊,以檢測不同干涉條紋影像的微小位移變化。另外,本系統使用通訊波段光源,除了使干涉系統具有遠端感測功能外,系統之靈敏度亦較使用可見光波段光源更佳。

於本論文中,我們成功量測固定化Capture DNA前後之相位靈敏度,證明經硫醇修飾與硫基還原反應後的Capture DNA可以鍵結於金膜表面並抓取Target DNA。另外專一性實驗,則證明我們使用之Capture DNA與Target DNA之間具有高度專一性。本架構量測microRNA-21之相位靈敏度為4.62×〖10〗^6 (rad /RIU),解析度為1.75×〖10〗^(-8) (RIU),此與理論值相符。


Surface plasmon resonance (SPR) is a physical phenomenon that occurs between the interface of metal and dielectric materials. It has been extensively utilized in bio-detection and immunochemistry for its great efficiency of analyzing the refraction index of detected materials. The typical SPR image sensor is utilizing the five-step algorithm to resolve the sensitivity and resolution through interference fringe images caused various phases. However, in the process of image capture, the system is susceptible to environmental quality and the phase retrieval is more complex.

In this thesis, a novel approach to improve SPR spatial phase biosensing was demonstrated. Because of the stability and resolvability of low coherence light source, we utilized the low coherence light source and laser source for reference and sensing, respectively through the cascaded optical fiber low coherence interferometry (OFLC), which the conventional SPR sensor could not monitor the sensing result in real-time. Unlike the complicated Hariharan five-frame algorithm in the conventional SPR, a windowed Fourier transform was utilized to analyze the phase information from the sensing light field to detect different interference fringes. Moreover, the telecommunication wavelength possessing the remote sensing feature will be taken in OFLCI for better sensitivity than visible light source.

We successfully demonstrated the Capture DNA phase sensitivity before and after immobilization. The Capture DNA could bond with the gold film surface through Thiol-Modified Oligonucleotide Reduction and then capture Target DNA. Moreover, the excellent specificity between Capture DNA and Target DNA is also experimentally illustrated. Finally, the sensitivity and resolution are shown 4.62×〖10〗^6 (rad /RIU) and 1.75×〖10〗^(-8) (RIU), respectively.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.1.1 微小核醣核酸(microRNA) 1 1.1.2 MicroRNA與癌症之關係 2 1.2 研究動機 3 1.3 研究目的 4 1.4 論文架構 5 第二章 基本理論與文獻探討 6 2.1 表面電漿共振 6 2.1.1 電漿子學之發展 6 2.1.2 表面電漿共振原理 8 2.1.3 表面電漿色散關係式 10 2.1.4 激發表面電漿波之條件與耦合方式 18 2.1.5 表面電漿共振生物感測器 22 2.2 光學干涉 25 2.2.1 干涉原理 26 2.2.2 光的同調性 29 2.2.3低同調干涉術 32 2.2.4 相移術原理 37 2.3 傅立葉轉換 40 2.3.1 頻域、時域與相位 40 2.3.2 傅立葉轉換 43 2.3.3窗口傅立葉轉換 46 2.4 MicroRNA檢測技術 50 2.4.1 傳統microRNA的檢測技術 50 2.4.2 利用表面電漿共振技術檢測microRNA 51 2.5 表面電漿共振影像感測器 53 2.5.1 強度調制 54 2.5.2 角度調制 56 2.5.3 波長調制 57 2.5.4 相位調制 60 第三章 感測器製作與系統測量 63 3.1 實驗系統架構 63 3.2 實驗步驟與訊號處理分析 66 3.2.1 SPR相位感測系統 66 3.2.2 OFLCI參考系統 67 3.2.3 訊號處理與分析 67 3.3 金薄膜厚度設計 72 3.3.1 Kretschman組態下系統反射率 72 3.3.2 金膜厚度模擬與討論 76 3.4 金膜蒸鍍沉積製程 79 3.4.1 蒸鍍原理 79 3.4.2 蒸鍍前置作業 79 3.4.3 金膜蒸鍍沉積製程步驟 81 3.5 金膜表面生物分子固定化步驟 84 3.5.1調製待測物濃度 84 3.5.2固定化步驟 85 第四章 測量結果與分析 87 4.1 干涉驗證分析 87 4.2 合成microRNA量測結果與分析 90 4.2.1有固定化Capture DNA 90 4.2.2未固定化Capture DNA 93 4.2.3專一性實驗 95 第五章 結論與未來展望 98 5.1 結論 98 5.2 本研究之新穎性 98 5.3 未來展望 100 參考文獻 101 英文縮寫對照表 106

[1] N. Kosaka, H. Iguchi, and T. Ochiya, "Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis," Cancer Science, vol. 101, pp. 2087-2092, 2010.
[2] D. J. Barber and I. C. EFreestone, "An investigation of the origin of the colour of the Lycurgus Cup by analytical transmission electron microscopy," Archaeometry, vol. 32, pp. 33-45, 1990.
[3] R. W. Wood, "On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum," Proceedings of the Physical Society of London, vol. 18, pp. 269, 1902.
[4] U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces " Journal of the Optical Society of America, vol. 31, pp. 213-222, 1941.
[5] R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Physical Review, vol. 106, pp. 874-881, 1957.
[6] E. A. Stern and R. A. Ferrell, "Surface Plasma Oscillations of a Degenerate Electron Gas," Physical Review, vol. 120, pp. 130-136, 1960.
[7] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and nuclei, vol. 216, pp. 398-410, 1968.
[8] E. Kretchmann and H. Reather, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch, vol. 23, pp. 2135-2136, 1968.
[9] B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, vol. 4, pp. 299-304, 1983.
[10] B. Rothenhäusler and W. Knoll, "Surface plasmon microscopy," Nature, vol. 332, pp. 615, 1988.
[11] 吳民耀、劉威志, "表面電漿子理論與模擬," 物理雙月刊, vol. 廿八卷二期, pp. 486-496, 2006.
[12] 邱國斌、蔡定平, "金屬表面電漿簡介," 物理雙月刊, vol. 廿八卷二期, pp. 472-485, 2006.
[13] J. Homola, "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species," Chemical Review, vol. 108, pp. 462-493, 2008.
[14] M. A. Cooper, "Optical biosensors in drug discovery," Nature Reviews Drug Discovery, vol. 1, pp. 515, 2002.
[15] P. A. Flournoy, R. W. McClure, and G. Wyntjes, "White-Light Interferometric Thickness Gauge," Applied Optics, vol. 11, pp. 1907-1915, 1972.
[16] B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Optics Letters, vol. 21, pp. 1839-1841, 1996.
[17] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, et al., "Spectroscopic optical coherence tomography," Optics Letters, vol. 25, pp. 111-113, 2000.
[18] R. C. Youngquist, S. Carr, and D. E. N. Davies, "Optical coherence-domain reflectometry: a new optical evaluation technique," Optics Letters, vol. 12, pp. 158-160, 1987.
[19] R. E. Ziemer and W. H. Tranter, "Principles of Communications," Wiley, New York, 1995, Chap. 2.
[20] J. W. Goodman, "Statistical Optics," Wiley, New York, 1985, Chap. 5 and 7.
[21] C. Akcay, P. Parrein, and J. Rolland, "Estimation of Longitudinal Resolution in Optical Coherence Imaging," Applied Optics, vol. 41, pp. 5256-5262, 2002.
[22] P. Hariharan, B. F. Oreb, and T. Eiju, "Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm," Applied Optics, vol. 26, pp. 2504-2506, 1987.
[23] J. Dongarra and F. Sullivan, "Guest Editors Introduction to the top 10 algorithms," Computing in Science & Engineering, vol. 2, pp. 22-23, 2000.
[24] M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," Journal of the Optical Society of America, vol. 72, pp. 156-160, 1982.
[25] S. Fang, H. J. Lee, A. W. Wark, and R. M. Corn, "Attomole Microarray Detection of microRNAs by Nanoparticle-Amplified SPR Imaging Measurements of Surface Polyadenylation Reactions," Journal of the American Chemical Society, vol. 128, pp. 14044-14046, 2006.
[26] Z. S. Sípová H, Dudley AM, Galas D, Wang K, Homola J., "Surface Plasmon Resonance Biosensor for Rapid Label-Free Detection of Microribonucleic Acid at Subfemtomole Level," Analytical Chemistry, vol. 82, pp. 10110-10115, 2010.
[27] S. G. Nelson, K. Johnston, and S. S. Yee, "High Sensitivity Surface Plasmon Resonance Sensor Based on Phase Detection," Sensors and Actuators B: Chemical, vol. 35, pp. 187-191, 1996.
[28] C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. Corn, "Surface Plasmon Resonance Imaging Measurements of DNA Hybridization Adsorption and Streptavidin/DNA Multilayer Formation at Chemically Modified Gold Surfaces," Analytical Chemistry, vol. 69, pp. 4939-4947, 1997.
[29] A. J. Thiel, A. G. Frutos, C. E. Jordan, R. Corn, and L. M. Smith, "In Situ Surface Plasmon Resonance Imaging Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces," Analytical Chemistry, vol. 69, pp. 4948-4956, 1997.
[30] B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. Corn, "Near-Infrared Surface Plasmon Resonance Measurements of Ultrathin Films. 1. Angle Shift and SPR Imaging Experiments," Analytical Chemistry, vol. 71, pp. 3928-3934, 1999.
[31] H. J. Lee, T. T. Goodrich, and R. Corn, "SPR Imaging Measurements of 1-D and 2-D DNA Microarrays Created from Microfluidic Channels on Gold Thin Films," Analytical Chemistry vol. 73, pp. 5525-5531, 2001.
[32] G. J. Wegner, H. Lee, and R. Corn, "Characterization and Optimization of Peptide Arrays for the Study of Epitope−Antibody Interactions Using Surface Plasmon Resonance Imaging," Analytical Chemistry, vol. 74, pp. 5161-5168, 2002.
[33] E. A. Smith, W. D. Thomas, L. Kiessling, and R. Corn, "Surface Plasmon Resonance Imaging Studies of Protein-Carbohydrate Interactions," Journal of the American Chemical Society, vol. 125, pp. 6140-6148, 2003.
[34] G. J. Wegner, H. Lee, G. Marriott, and R. Corn, "Fabrication of Histidine-Tagged Fusion Protein Arrays for Surface Plasmon Resonance Imaging Studies of Protein−Protein and Protein−DNA Interactions," Analytical Chemistry, vol. 75, pp. 4740-4746, 2003.
[35] Y. Li, H. Lee, and R. Corn, "Fabrication and characterization of RNA aptamer microarrays for the study of protein–aptamer interactions with SPR imaging," Nucleic Acids Research, vol. 34, pp. 6416-6424, 2006.
[36] A. Wark, H. Lee, and R. Corn, "Long-Range Surface Plasmon Resonance Imaging for Bioaffinity Sensors," Analytical Chemistry, vol. 77, pp. 3904-3907, 2005.
[37] A. Wark, H. Lee, A. J. Qavi, and R. Corn, "Nanoparticle-Enhanced Diffraction Gratings for Ultrasensitive Surface Plasmon Biosensing," Analytical Chemistry, vol. 79, pp. 6697-6701, 2007.
[38] H. Lee, A. Wark, and R. Corn, "Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings," Analyst, vol. 133, pp. 596-601, 2008.
[39] E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, "Characterization of a wavelength-tunable surface plasmon resonance microscope," Review of Scientific Instruments, vol. 75, pp. 2300-2304, 2004.
[40] E. Fu, J. Foley, and P. Yager, "Wavelength-tunable surface plasmon resonance microscope," Review of Scientific Instruments, vol. 74, pp. 3182-3184, 2003.
[41] J. A. Ruemmele, M. S. Golden, Y. Gao, E. M Cornelius, M. E. Anderson, L. Postelnicu, et al., "Quantitative Surface Plasmon Resonance Imaging: A Simple Approach to Automated Angle Scanning," Analytical Chemistry, vol. 80, pp. 4752-4756, 2008.
[42] 陳奕仁, "應用多入射角於影像式橢圓偏光術在表面電漿共振量測," 國立交通大學光電工程研究所碩士論文, 2012.
[43] C. L. Wong, H. P. Ho, P. L. Wong, S. Y. Wu, and F. Guo, "Application of surface plasmon resonance to measurement of hydrostatic pressure in tribological lubricant layers," presented at the 2003 IEEE Conference on Electron Devices and Solid-State Circuits, EDSSC 2003, 2003.
[44] J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. Jin Kim, et al., "Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging," Biosensors and Bioelectronics, vol. 21, pp. 1521-1528, 2006.
[45] J. S. Yuk, D. G. Hong, H. I. Jung, and K. S. Ha, "Application of spectral SPR imaging for the surface analysis of C-reactive protein binding," Sensors and Actuators B: Chemical, vol. 119, pp. 673-675, 2006.
[46] L. Liu, Y. He, Y. Zhang, S. Ma, H. Ma, and J. Guo, "Parallel scan spectral surface plasmon resonance imaging," Applied Optics, vol. 47, pp. 5616-5621, 2008.
[47] S. H. Lee, N. Lindquist, N. Wittenberg, L. R Jordan, and S. H. Oh, "Real-time Full-spectral Imaging and Affinity Measurements from 50 Microfluidic Channels using Nanohole Surface Plasmon Resonance," Lab on a Chip, vol. 12, pp. 3882-3890, 2012.
[48] C. L. Wong, G. C. K. Chen, X. Li, B. K. Ng, P. Shum, P. Chen, et al., "Colorimetric surface plasmon resonance imaging (SPRI) biosensor array based on polarization orientation," Biosensors and Bioelectronics, vol. 47C, pp. 545-552, 2013.
[49] C. Wong, G. Chung Kit Chen, B. K. Ng, S. Agarwal, Z. Lin, P. Chen, et al., "Multiplex spectral surface plasmon resonance imaging sensor based on the polarization control scheme," Optics Express, vol. 19, pp. 18965-18978, 2011.
[50] A. V. Kabashin and P. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Optics Communications, vol. 150, pp. 5-8, 1998.
[51] H. P. Ho and W. W. Lam, "Application of differential phase measurement technique to surface plasmon resonance sensors," Sensors and Actuators B: Chemical, vol. 96, pp. 554-559, 2003.
[52] Y. D. Su, S. J. Chen, and T. L. Yeh, "Common-Path phase-shift interferometry surface plasmon resonance imaging system," Optics Letters, vol. 30, pp. 1488-1490, 2005.
[53] X. Yu, X. Ding, F. Liu, X. Wei, and D. Wang, "A surface plasmon resonance interferometer based on spatial phase modulation for protein array detection," Measurement Science and Technology, vol. 19, pp. 015301, 2007.
[54] X. Yu, X. Ding, F. Liu, and Y. Deng, "A novel surface plasmon resonance imaging interferometry for protein array detection," Sensors and Actuators B: Chemical, vol. 130, pp. 52-58, 2008.
[55] A. Halpern, Y. Chen, R. Corn, and D. Kim, "Surface Plasmon Resonance Phase Imaging Measurements of Patterned Mono layers and DNA Adsorption onto Microarrays," Analytical Chemistry, vol. 83, pp. 2801-2806, 2011.
[56] W. J. Zhou, A. R. Halpern, T. H. Seefeld, and R. M. Corn, "Near Infrared Surface Plasmon Resonance Phase Imaging and Nanoparticle-Enhanced Surface Plasmon Resonance Phase Imaging for Ultrasensitive Protein and DNA Biosensing with Oligonucleotide and Aptamer Microarrays," Analytical Chemistry, vol. 84, pp. 440-445, 2012.
[57] C. L Wong, H. P. Ho, T. T Yu, Y. K. Suen, W. W Y Chow, S. Y Wu, et al., "Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging," Applied Optics, vol. 46, pp. 2325-2332, 2007.
[58] C. L Wong, H. P. Ho, Y.K. Suen, S. K Kong, Q. L Chen, W. Yuan, et al., "Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging," Biosensors and Bioelectronics, vol. 24, pp. 606-612, 2008.
[59] 蘇園登, "表面電漿共振相位影像系統," 國立中央大學機械工程研究所碩士論文, 2004.
[60] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, vol. 37, pp. 5271-5283, 1998.
[61] P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Physical Review B, vol. 6, pp. 4370-4379, 1972.
[62] S. T. Ltd, "optical glass data sheets," 2015.
[63] S. A. Kim, S. J. Kim, S. H. Lee, T. H. Park, K. M. Byun, S. G. Kim, et al., "Avian influenza-DNA hybridization detection using wavelength interrogation-based surface plasmon resonance biosensor," presented at the 2009 IEEE Sensors, 2009.
[64] H. Su and X. G. Huang, "Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions," Sensors and Actuators B: Chemical, vol. 126, pp. 579-582, 2007.

無法下載圖示 全文公開日期 2023/08/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE