簡易檢索 / 詳目顯示

研究生: 黃代聖
Tai-sheng Haung
論文名稱: 固態燃料電池相關元件製造
Fabrication of the Components for SOFC
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 周振嘉
Chen-Chia Chou
黃炳照
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 101
中文關鍵詞: 固態燃料電池電解質陰極陽極刮刀成形技術
外文關鍵詞: membrane electrode assembly, electrolyte, cathode, anode, tape casting
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

燃料電池 (Fuel Cell) 是一種將燃料的化學能,透過電化學反應直接轉換成電能的裝置。其發展歷史可以追朔至一八三九年,當時利用稀釋的流酸當作電解液,成功地產生電能。經過不斷研究,能司特於一八九九年,首度發現固態電解質的導電行為。而第一個陶瓷型燃料電池則於一九三七年,由包爾與普萊斯首先示範成功。固態氧化物燃料電池 (Solid Oxide Fuel Cell) 為其中一種裝置,它具要無污染、高發電效能的優點,但是由於成本高且須於高溫下超作,故運用上仍有所限制。
本論文之研究主要針對固態氧化物燃料電池中之主要元件製造,其中包含電解質、陽極、陰極所組成的MEA (Membrane of Electrolyte Assembly)。並且加入封裝的設計,以期可用於後續本校燃料電池原型之製造。而整體的製造過程如下;首先製造電解質,其電解質係利用刮刀成形技術製造出如紙片般的陶瓷薄片。於刮刀成形製造過程中,吾人發現當承載塑膠片的速度於10~20 mm/s,可得均勻的陶瓷片薄片。再者將陶瓷薄片裁成所需之大小,將其疊合成所需之厚度。再經熱壓過程,而當於熱壓過程中,受壓之原件其壓力必需保持在20kg/cm²、熱壓溫度為90℃,方可得良好之結合性。最後送於高溫爐燒結,使得固態電解質。本研究中吾人成功製造出約10公分正方,厚度為0.03 公分之平坦電解質。而陰極與陽極係利用網印技術將氧化鎳與鑭鍶錳塗佈於電解質上。在製造過程中,熱壓製程常發生空洞缺陷或是層與層之間黏合不良,導致燒結完之電解質產生變形、破裂或是層與層分離。因此本文加入多層式刮刀成形,其結果可得良好的電解質,且也大大改善先前所提之製程所產生之缺陷,同時電解質的平坦度也大幅提升。
本論文同時也加入封裝的設計,其原理為利用一金屬環,使其變形於所設計之下蓋溝槽內,而達到封裝之效果。金屬環之材質為紅銅與不鏽鋼3XX系列,實驗時的金屬環厚度分別為0.01公分、0.03公分及0.05公分。本論文實驗之結果於常溫下二十四小時內,飽和壓力由5 Kg/cm² 降到 4.8 Kg/cm²。但礙於高溫設備尚未設計架構完成,本實驗尚需要驗證於高溫下之漏率。


Recently the Solid Oxide Fuel Cell (SOFC) is developed rapidly because global resources are becoming less and less. SOFCs are more energy-efficient than combustion engines. There are a lot of challenges and improvements in this technology. In this study we plan to manufacture a planar Solid Oxide Fuel Cell (SOFC) which contains one membrane electrode assembly (MEA). The diameter of the SOFC is 80 mm and the dimension of MEA is 40mm x 40mm. Furthermore, a mechanical sealing design is investigated to provide possible solution for our prototype. In this work, the main component of MEA, electrolyte, is manufactured by tape casting. The anode and cathode are coated on both sides of electrolyte by screen printing. Additionally, we use the multilayer casting to manufacture flatter electrolyte. Furthermore, we fabricated the MEAs of anode-support and electrolyte-support.

We successfully manufactured the MEA whose size was 40 mm x 40 mm and the active area was 39 mm x 39 mm. Furthermore, we fabricated the large-area electrolyte whose dimension is 100mm X 100mm. In the laminating process, the parameters including the temperature, the pressure, and pressing time were investigated. When the setting was 90℃, 15 Kg/cm², and 40 minutes, the laminating quality was guaranteed. In tape casting, we used multilayer casting to manufacture the electrolyte. This method provided good adhesion and flatter component. For manufacturing the MEAs of anode-support and electrolyte-support, we combined two materials of the electrolyte and anode. The components were co-sintered at high temperature. Unfortunately, the relative density was 82% which didn’t meet our requirement.

In the sealing design, we plan to use the deformation of the metal gasket to seal our prototype. For testing the mechanical sealing, we designed three types of sealing models to test the sealing performance. Two gasket materials were tested – copper and 420 stainless steel. For sealing the three models, we used the compressive force to seal in this study. The sealing performance depended on the deformation of the gaskets. The thicknesses of the testing gaskets are 0.1, 0.3 and 0.5 mm. According the results, the type 3 of which the gap is 0.1mm between the grove and the protrudent key, has lower leakage. In this experiment, the thickness of the gasket is 0.1mm. The pressure drops from 5 Kg/cm² to 4.8 Kg/cm² in 24 hours.

Table of Contents Contents........................................................Ⅱ List of Tables................................................. Ⅳ List of Figures................................................ V Chapter 1 Introduction..........................................1 1.1 Overview................................................... 1 1.2 Motivation..................................................7 1.3 Individual/Group Work Statement............................ 7 Chapter 2 Literature review................................... 8 2.1 Solid oxide Fuelcell....................................... 10 2.2 Membrane Electrode Assembly (MEA)......................... 12 2.3 Tape Casting.............................................. 12 2.3.1 Casting................................................. 13 2.3.2 Dry................................................. 14 2.3.3 Shaping and laminating................................... 15 2.4 ....................................................... 16 Chapter 3 Manufacture and Experiment of MEA (Membrane Electrode Assembly)...................................................... 19 3.1 Materials of MEA........................................... 20 3.2 Tape Casting............................................... 21 3.2.1 Velocity and Thickness................................... 24 3.2.2 Dry.................................................. 25 3.3 Shaping and Laminating..................................... 28 3.3.1 Initial Experiment of Lamination..........................28 3.3.2 Low Loading Lamination................................... 31 3.4 Sintering............................................... 36 3.4.1 Sintering Single Electrolyte............................. 36 3.4.2 Co-sintering Electrolyte and Anode....................... 39 3.5 Multilayer casting......................................... 43 3.6 AC impedance analysis of the electrolyte................ 45 3.7 Screen Printing and Re-sintering.......................... 48 Chapter 4 Leakage test.................................... 46 4.1 Mechanical Sealing Design............................... 47 4.2 Properties of Gasket....................................... 50 4.3 Test Setup.......................................... 51 4.4 Results and Analyses....................................... 51 Chapter 5 Conclusion and Suggestion....................... 57 5.1 Conclusion............................................. 57 5.2 Suggestions and Future Work................................ 58 Reference.......................................................59 Appendices Appendix A The complete cross-section in initial experiment of lamination..................................................... 61 Appendix B The complete cross-section in low loading lamination 66 Appendix C The complete deformations of the samples are plotted with the measured thickness by Excel.....................................69 Appendix D The impedance spectra of the test sample............ 78 Appendix E The recorded results of the pressure................ 95 List of Table Chapter 1 Introduction Table 1.1 The classification of fuel cells.......................................................... 4 Chapter 2 Literature review Table 2.1 Developers of SOFC in electrolyte-support planar cell design and corresponding fabrication and design details................... 11 Table 2.2 Developers of SOFC in anode-support planar cell design and corresponding fabrication and design details................... 11 Table 2.3 Developers of SOFC in tubular cell design and corresponding fabrication and design details................................. 12 Chapter 3 Manufacture and Experiment of MEA (Membrane Electrode Assembly) Table 3.1 The properties of the slurries for MEA............... 20 Table 3.2 The measured result of one single green sheet........ 23 Table 3.3 The measured thicknesses under different speeds of the carrier film........................................................... 24 Table 3.4 The result of drying............................. 26 Table 3.5 The parameters of the initial experiment).......... 28 Table 3.6 The different laminating conditions (use the hot press machine)........................................................29 Table 3.7 The results of thickness (use the hot press machine). 30 Table 3.8 The different laminating conditions (use lower loading)..................................................... 32 Table 3.9 T The results of the thickness under lower loading... 33 Table 3.10 Different laminating condition for sintering........ 34 Table 3.11 The result of dimension and shrinkage after sintering.......................................................34 Table 3.12 The measured data of the density.................... 38 Table 3.13 The measured result of dimension before and after sintering................................................. 38 Table 3.14 The results of flatness error and uniformity error.. 39 Table 3.15 The measured thickness of type (3).................. 40 Table 3.16 The measured thickness of type (4).................. 40 Table 3.17 The results of flatness error and uniformity error of the electrolyte-support and anode-support.................43 Table 3.18 The measured data of the density under 1400 ℃...... 43 Table 3.19 The measured result of the electrolyte which is manufactured by multilayer casting, after sintering............................ 44 Table 3.20 The flatness error and uniformity error of the electrolyte which is manufactured by multilayer casting............................. 44 Chapter 4 Leakage test Table 4.1 Properties of the gaskets............................ 51 List of Figures Chapter 1 Introduction Fig 1.1 The price of gasoline from 2003 to 2005................ 1 Fig 1.2 Production of coal, the nation’s most abundant fuel source, exceeded 1 billon tons in 2000. Electricity generation accounted for about for 90 percent of U.S. coal consumption last year..................... 2 Fig 1.3 Renewable energy has becomes a significant source of electric power in the United States.......................................... 2 Fig 1.4 Principle of a fuel cell............................... 3 Fig 1.5 The battery of DMFC for MP3 player..................... 6 Chapter 2 Literature review Fig 2.1 Schematic planar solid oxide fuel cell................. 9 Fig 2.2 Schematic of tubular solid oxide fuel cell............. 9 Fig 2.3 Schematic of the process of tape casting............... 13 Fig 2.4 A continuous tape caster............................... 13 Fig 2.5 Schematic drawing of a doctor blade arrangement fro multiple-layer casting........................................................ 13 Fig 2.6 Schematic of weight versus time in drying process...... 14 Fig 2.7 Experimental laminar flow drying chamber............... 14 Fig 2.8 Schematic of co-fired multilayer process for alumina electronic packaging using tape........................................... 15 Fig 2.9 Structure of double-sided adhesive tape................ 15 Fig 2.10 Processing steps in the low pressure lamination..... 16 Fig 2.11 Functional requirements for planar SOFC sealing....... 17 Fig 2.12 Schematic of a SOFC and possible seals and their locations..................................................... 17 Fig 2.13 Coefficient of Thermal Expansion (CTE) for some useful metallic, ceramic, and glass materials................................ 18 Fig 2.14 Schematic of different compressive sealing concepts... 18 Chapter 3 Manufacture and Experiment of MEA (Membrane Electrode Assembly) Fig 3.1 The structure of chapter three........................ 19 Fig 3.2 The manufacturing process of MEA.................. 20 Fig 3.3 A tape casting machine................................. 22 Fig 3.4 The measured position of the green sheet............... 23 Fig 3.5 The measured position of the green sheet under different velocity of the carrier film............................................... 24 Fig 3.6 The relationship between the thickness and the velocity ...................................................... 25 Fig 3.7 Experimental drying chamber............................ 25 Fig 3.8 The electrolyte slurry remaining weight versus drying time without air blowing air and with blowing air............................... 27 Fig 3.9 The anode slurry remaining weight versus drying time without air blowing air and with blowing air.............................. 27 Fig 3.10 A hot pressing machine................................ 28 Fig 3.11 The good and poor adhesion............................ 30 Fig 3.12 The overflow and non-overflow components.............. 31 Fig 3.13 The pressing model................................ 31 Fig 3.14 Schematic of lower load system........................ 32 Fig 3.15 The universal testing machine.................. 33 Fig 3.16 Schematic of heating plates.......................... 34 Fig 3.17 The OM picture of the cross-sections of the electrolyte after sintering.............................................. 35 Fig 3.18 The SEM picture of the cross-section of sample D after sintering................................................ 35 Fig 3.19 Sintering procedure of single electrolyte............. 37 Fig 3.20 The results of TGA and DTA............................ 37 Fig 3.21 A flat and large-area electrolyte..................... 39 Fig 3.22 Process of co-sintering step.......................... 41 Fig 3.23 Plot the electrolyte-support and anode-support by EXCEL...........................................................41 Fig 3.24 The interface of electrolyte and anode................ 42 Fig 3.25 The same area of electrolyte-support and anode-support........................................................ 42 Fig 3.26 Laminated different area of electrolyte-support and anode-support........................................................ 42 Fig 3.27 The cross-section of the electrolyte (manufactured by the multilayer casting)....................................................... 44 Fig 3.28 Plotted the electrolyte which is manufactured by multilayer casting........................................................ 44 Fig 3.29 Screen printing machine.......................... 45 Fig 3.30 The sintering process of the cathode and anode after screen printing.................................................... 45 Fig 3.31 The MEA which the dimension of the electrolyte is 40 mm x 40 mm and the active area is 39 mm x 39 mm............................... 45 Chapter 4 Leakage test Fig 4.1 The prototype of planar SOFC......................... 46 Fig 4.2 Schematic of the possible seals and their locations in our prototype...................................................... 46 Fig 4.3 Schematic of test leakage model........................ 47 Fig 4.4 The components of type................................. 48 Fig 4.5 Schematic of Type 1.................................... 48 Fig 4.6 The components of type 2............................... 49 Fig 4.7 Schematic of Type 2................................... 49 Fig 4.8 The components of type 3............................... 50 Fig 4.9 Schematic of Type 3................................ 50 Fig 4.10 Schematic of test setup............................... 51 Fig 4.11 The leakage result of Type 1 (The gasket is copper)... 52 Fig 4.12 The leakage result of Type 1 (The gasket is S.S. 304). 52 Fig 4.13 The leakage result of Type 2 (The gasket is copper)... 53 Fig 4.14 The leakage result of Type 2 (The gasket is S.S. 304). 53 Fig 4.15 The leakage result of Type 3 (The gasket is copper)... 54 Fig 4.16 The leakage result of Type 3 (The gasket is S.S. 304). 54 Fig 4.17 After leakage test the copper gasket is cracker.... 55 Fig 4.18 After leakage test the copper gasket is cracker and wrinkled....................................................... 55 Fig 4.19 After leakage test the stainless gasket is wrinkled... 55 Fig 4.20 The gasket is completely deformed in type 2........... 56 Fig 4.21 The gasket of type 3 which has batter sealing performance.................................................... 56

Reference
[1] Energy Intelligence Group, Oil Market Intelligence, March 2004
[2] http://media.ford.com/newsroom/feature_display.cfm?release=18794
[3] http://www.gm.com/company/gmability/adv_tech/400_fcv/fc_challenges.htm “ Fuel Cell Technology: Prospects, Promises and Challenges “
[4] Vijay Ramani “Fuel cells “, the electrochemical society interface, spring 2006, Page 41
[5] U.S. Department of Energy Homepage “Energy Efficient and Renewable Energy “
[6] http://www.spice.or.jp/~fisher/sofc.html#descript “Collection of history of fuel cell “
[7] http://www.gm.com/company/gmability/adv_tech/400_fcv/fc_challenges.htm “ Fuel Cell Technology: Prospects”
[8] http://americanhistory.si.edu/fuelcells/index.htm
[9] Subhash C Singhal and Kevin kendall “High Temperature Solid Oxide Fuel Cell : Fundamentals , Design and Applications “ , Elsevier Ltd. Pp12-pp13
[10] Subhash C Singhal and Kevin kendall “High Temperature Solid Oxide Fuel Cell : Fundamentals , Design and Applications “ , Elsevier Ltd. Pp224
[11] Azra Selimovic , Jens Palssom “ Networked solid oxide fuel cell stacks combined with a gas turbine cycle “ , Journal of Power Soc. 106 (2002) 76-82 .
[12] U.S. Department of Energy Homepage “Energy Efficient and Renewable Energy “
[13] F. Tietz*, H.-P. Buchkermer, D. Stover “Review article Components manufacturing for solid oxide fuel cell”, Forshcungszentrum Julich, Institude for Materials and Process in Energy Systems (IWV-1), D-52425 Julich, Germany Accetped 18 January 2002
[14] G.. N. Hoeatt , “ Method of Producing High Dielectric , High Insulation Ceramic Plates “, U.S. Patent 2.585.993 , (Jan. 22 , 1952 )
[15] George Y. Onoda , Jr. and Larry L. Hench “ CERAMIC PROCESSING BEFORE FIRING “ , A wiley – Interscience Publication p413 .
[16] T. A. Ring, A model of tape casting Bingham plastic and Newtonian fluids. Adv. Ceram. 26 (1989) 569 576.
[17] A. F. Greaves-Walker, “Drying Ceramic Products “, Industrial Publications, Chicago, 1968, p.19.
[18] George Y. Onoda , Jr. and Larry L. Hench “ CERAMIC PROCESSING BEFORE FIRING “, A wiley – Interscience Publication p413
[19] Michael A. Piwonski , Andreas Roosen , “ Low Pressure Lamination of Ceramic Green Tapes by Gluing at Room Temperature “ .
[20] K. Scott Weil , Christopher A. Coyle . John S. Hardy ., Jin Y. Kim and Guan-Guang Xia – Pacific Northwest National Laboratory , Richland , WA, USA , “ Alternative planar SOFC sealing concepts “ . Fuel Cell Bulletin , May 2004
[21] J. P. Rice , H. M. Paxton and K. S. Weil (2002) Oxidation behavior of a commercial gold-based braze alloy for ceramic to metal joining , in : H-T Lin and M. Singh (Eds) . Proceedings of 26th Annual Conference on Composites . Advanced Ceramics , Materials and Structure : B (American Ceramic Society , Westerville , OH ,USA )
[21] Raj N. Sinfh and S. S. Parhar “ Layered Composite Seals For Solid Oxide Fuel Cell ( SOFC ) “ Department of Chemical and Materials Engineering University of Cincinnati , P.O. Box 210012 , Cincinnati , OH 45241-0012
[22] Martin Bram* , Stephan Reckers . Pere Dirnovac , Josef Mönch , Rolf W. Steinbrech , Hams Buchkremer , Detlev Stöver , “ Deformation behavior tests of alternate sealing materials for SOFC stacks “ , Journal of Power Source 138 (2004) 111-119
[23] 韓敏芳, 彭莉萍,. 固態氧化物燃料電池材料及製備,. 科學出版社

無法下載圖示 全文公開日期 2011/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE