簡易檢索 / 詳目顯示

研究生: Zeeshan Uddin
Zeeshan Uddin
論文名稱: 以固定床反應器為基底之二氧化碳甲烷化整廠製程設計與控制
Design and Control of Plant-wide Fixed-bed Methanation of Carbon dioxide
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 曾堯宣
Yao-Hsuan Tseng
余柏毅
Bor-Yih Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 148
中文關鍵詞: MethanationPower-to-gasCO2 volarisationsimulated annealing
外文關鍵詞: Methanation, Power-to-gas, CO2 volarisation, simulated annealing
相關次數: 點閱:385下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Environmental concerns due to the exacerbation of emissions brings about a renewed
interest in the methanation of carbon dioxide. This study is an attempt to explore the plantwide process designs for CO2 methanation using Aspen Plus simulator. In particular, several adiabatic and non-adiabatic reactor designs are investigated. Temperature excursion/runaway is the major challenge repeatedly encountered in both the reactor designs. Several modifications in the process designs are attempted but the designs equipped with internal recycle are found to be more adoptable for this highly exothermic reaction. Process design is followed by the cost optimization for each design. A non-convex multi-constrained optimization is performed using simulated annealing algorithm. An optimization code is written on Matlab, and COM technology is used to interface it with Aspen Plus. A base case configuration at fixed throughput is first developed for all the process designs, followed by the optimization within feasible region which is dictated by the ranges of selected design variables and process constraints. Three optimization runs are carried out for each design. Hydrogen flow is considered as a key optimization variable since it has the highest cost amongst all the other components. The cost benefit from steam generation is also included in the objective function. Non-adiabatic reactor equipped with internal recycle is found to have the lowest cost. Adiabatic reactor designs which have the comparable cost either suffered from the temperature excursion or pressure drop which
renders them unsuitable for the operation. Therefore, the dynamic control performance is only studied for the designs equipped with internal recycle. Several control structures are developed with different control loops which can effectively stabilize the process in wake of the disturbances in throughput and feed composition. It is observed that the control scheme equipped with purity analyzer and subsequent manipulation in the ratio of hydrogen and carbon dioxide molar flowrate can effectively stabilize the process.


Environmental concerns due to the exacerbation of emissions brings about a renewed
interest in the methanation of carbon dioxide. This study is an attempt to explore the plantwide process designs for CO2 methanation using Aspen Plus simulator. In particular, several adiabatic and non-adiabatic reactor designs are investigated. Temperature excursion/runaway is the major challenge repeatedly encountered in both the reactor designs. Several modifications in the process designs are attempted but the designs equipped with internal recycle are found to be more adoptable for this highly exothermic reaction. Process design is followed by the cost optimization for each design. A non-convex multi-constrained optimization is performed using simulated annealing algorithm. An optimization code is written on Matlab, and COM technology is used to interface it with Aspen Plus. A base case configuration at fixed throughput is first developed for all the process designs, followed by the optimization within feasible region which is dictated by the ranges of selected design variables and process constraints. Three optimization runs are carried out for each design. Hydrogen flow is considered as a key optimization variable since it has the highest cost amongst all the other components. The cost benefit from steam generation is also included in the objective function. Non-adiabatic reactor equipped with internal recycle is found to have the lowest cost. Adiabatic reactor designs which have the comparable cost either suffered from the temperature excursion or pressure drop which
renders them unsuitable for the operation. Therefore, the dynamic control performance is only studied for the designs equipped with internal recycle. Several control structures are developed with different control loops which can effectively stabilize the process in wake of the disturbances in throughput and feed composition. It is observed that the control scheme equipped with purity analyzer and subsequent manipulation in the ratio of hydrogen and carbon dioxide molar flowrate can effectively stabilize the process.

1. Introduction 2. Thermodynamics and Kinetic model 3. Economics and process optimization 4. Basis for process design 5. Process dynamics and control 6. Conclusion and Future work

1. Ritchie, H.; Roser, M. Energy Mix. https://ourworldindata.org/energy-mix (accessed
October 1, 2021).
2. Population, total - The World Bank.
https://data.worldbank.org/indicator/SP.POP.TOTL?end=2020&locations=1W&start
=1960&view=chart (accessed October 1, 2021).
3. Friedlingstein, P. et. al., Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12
(4), 3269-3340.
4. EU climate action and the European Green Deal.
https://ec.europa.eu/clima/policies/eu-climate-action_en (accessed September 30,
2021).
5. FACT sheet: President Biden Sets 2030 greenhouse gas pollution reduction TARGET
aimed at Creating GOOD-PAYING union jobs and Securing U.S. leadership on clean
energy technologies. https://www.whitehouse.gov/briefing-room/statementsreleases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollutionreduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-sleadership-on-clean-energy-technologies/ (accessed September 30, 2021).
6. Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov,
A. Y., Highlights and challenges in the selective reduction of carbon dioxide to
methanol. Nature Reviews Chemistry 2021, 5 (8), 564-579.
7. Wang, W.; Wang, S.; Ma, X.; Gong, J., Recent advances in catalytic hydrogenation
of carbon dioxide. Chemical Society Reviews 2011, 40 (7), 3703-3727.
8. Bailera, M.; Lisbona, P.; Romeo, L. M.; Espatolero, S., Power to Gas projects review:
Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and
Sustainable Energy Reviews 2017, 69, 292-312.
9. Snoeckx, R.; Bogaerts, A., Plasma technology – a novel solution for CO2 conversion?
Chemical Society Reviews 2017, 46 (19), 5805-5863.
10. Monthly Energy Review. Administration, U. S. E. I., Ed. Office of Energy Statistics,
U.S. Department of Energy: 2021.130
11. Total primary energy supply - Asia Pacific. https://www.iea.org/regions/asia-pacific
(accessed October 1, 2021).
12. Bajohr, S.; Schollenberger, D.; Buchholz, D.; Weinfurtner, T.; Götz, M., Kopplung
der PtG-Technologie mit thermochemischer Biomassevergasung: Das KIC-Projekt
"DemoSNG". GWF / Gas, Erdgas 2014, 155 (7), 470-475.
13. Borgschulte, A.; Gallandat, N.; Probst, B.; Suter, R.; Callini, E.; Ferri, D.; Arroyo,
Y.; Erni, R.; Geerlings, H.; Züttel, A., Sorption enhanced CO2 methanation. Physical
Chemistry Chemical Physics 2013, 15 (24), 9620-9625.
14. Walspurger, S.; Elzinga, G. D.; Dijkstra, J. W.; Sarić, M.; Haije, W. G., Sorption
enhanced methanation for substitute natural gas production: Experimental results and
thermodynamic considerations. Chemical Engineering Journal 2014, 242, 379-386.
15. Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.;
Prabhakaran, P.; Bajohr, S., Review on methanation – From fundamentals to current
projects. Fuel 2016, 166, 276-296.
16. Kopyscinski, J.; Schildhauer, T. J.; Biollaz, S. M. A., Methanation in a fluidized bed
reactor with high initial CO partial pressure: Part I—Experimental investigation of
hydrodynamics, mass transfer effects, and carbon deposition. Chemical Engineering
Science 2011, 66 (5), 924-934.
17. Fujita, S.; Terunuma, H.; Nakamura, M.; Takezawa, N., Mechanisms of methanation
of carbon monoxide and carbon dioxide over nickel. Industrial & Engineering
Chemistry Research 1991, 30 (6), 1146-1151.
18. Fujita, S.-I.; Takezawa, N., Difference in the selectivity of CO and CO2 methanation
reactions. Chemical Engineering Journal 1997, 68 (1), 63-68.
19. Harms, H.; Höhlein, B.; Skov, A., Methanisierung kohlenmonoxidreicher Gase beim
Energie-Transport. Chemie Ingenieur Technik 1980, 52 (6), 504-515.
20. Topsoe, H., From coal to substitute natural gas using TREMP. Haldor Topsoe 2008.
21. Ngo, S. I.; Lim, Y.-I.; Lee, D.; Go, K. S.; Seo, M. W., Flow behaviors, reaction
kinetics, and optimal design of fixed-and fluidized-beds for CO2 methanation. Fuel
2020, 275, 117886.131
22. Eisenlohr, K. H.; Moeller, F. W.; Dry, M., Influence of certain reaction parameters on
methanation of coal gas to SNG. Am. Chem. Soc., Div. Fuel Chem., Prepr.;(United
States) 1974, 19 (3).
23. Panek, J. M.; Grasser, J., Practical experience gained during the first twenty years of
operation of the great plains gasification plant and implications for future projects. US
Department of Energy-Office of Fossil Energy, Washington 2006.
24. Ensell, R. L.; Stroud, H. J., British Gas HICOM methanation process for SNG
production. 1983.
25. Lohmüller, R., Methansynthese mit kombinierten isothermen und adiabaten Reaktoren.
Berichte aus Technik und Wissenschaft 1977.
26. White, G. In The RMProcess-A methanation system, Ninth synthetic pipeline gas
symposium, Chicago, 1977; American Gas Association: Chicago, 1977; pp 129-135.
27. Ganzer, G.; Daniel, A.; Freund, H., Detailed geometrical analysis of statistical activity
variations in diluted catalyst beds. Chemical Engineering Research and Design 2019,
148, 102-118.
28. Alarcón, A.; Guilera, J.; Andreu, T., CO2 conversion to synthetic natural gas: Reactor
design over Ni–Ce/Al2O3 catalyst. Chemical Engineering Research and Design 2018,
140, 155-165.
29. Vannice, M. A., The catalytic synthesis of hydrocarbons from carbon monoxide and
hydrogen. Catalysis Reviews—Science and Engineering 1976, 14 (1), 153-191.
30. Hong, J. H.; Kobayashi, R., Vapor-liquid equilibrium study of the hydrogen-methane
system at low temperatures and elevated pressures. Journal of Chemical & Engineering
Data 1981, 26 (2), 127-131.
31. Gao, J.; Wang, Y.; Ping, Y.; Hu, D.; Xu, G.; Gu, F.; Su, F., A thermodynamic
analysis of methanation reactions of carbon oxides for the production of synthetic
natural gas. RSC advances 2012, 2 (6), 2358-2368.
32. Sabatier, P.; Senderens, J. B., Comptes Rendus Des Séances De L'Académie Des
Sciences, Section VI–Chimie. Paris: Imprimerie Gauthier-Villars 1902.
33. Weatherbee, G. D.; Bartholomew, C. H., Hydrogenation of CO2 on group VIII metals:
II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis
1982, 77 (2), 460-472.132
34. Chiang, J. H.; Hopper, J. R., Kinetics of the hydrogenation of carbon dioxide over
supported nickel. Industrial & Engineering Chemistry Product Research and
Development 1983, 22 (2), 225-228.
35. Xu, J.; Froment, G. F., Methane steam reforming, methanation and water‐gas shift: I.
Intrinsic kinetics. AIChE journal 1989, 35 (1), 88-96.
36. Koschany, F.; Schlereth, D.; Hinrichsen, O., On the kinetics of the methanation of
carbon dioxide on coprecipitated NiAl (O) x. Applied Catalysis B: Environmental
2016, 181, 504-516.
37. Lim, J. Y.; McGregor, J.; Sederman, A. J.; Dennis, J. S., Kinetic studies of CO2
methanation over a Ni/γ-Al2O3 catalyst using a batch reactor. Chemical Engineering
Science 2016, 141, 28-45.
38. Miguel, C. V.; Mendes, A.; Madeira, L. M., Intrinsic kinetics of CO2 methanation over
an industrial nickel-based catalyst. Journal of CO2 Utilization 2018, 25, 128-136.
39. Marocco, P.; Morosanu, E. A.; Giglio, E.; Ferrero, D.; Mebrahtu, C.; Lanzini, A.;
Abate, S.; Bensaid, S.; Perathoner, S.; Santarelli, M., CO2 methanation over Ni/Al
hydrotalcite-derived catalyst: Experimental characterization and kinetic study. Fuel
2018, 225, 230-242.
40. Champon, I.; Bengaouer, A.; Chaise, A.; Thomas, S.; Roger, A.-C., Carbon dioxide
methanation kinetic model on a commercial Ni/Al2O3 catalyst. Journal of CO2
Utilization 2019, 34, 256-265.
41. Loder, A.; Siebenhofer, M.; Lux, S., The reaction kinetics of CO2 methanation on a
bifunctional Ni/MgO catalyst. Journal of Industrial and Engineering Chemistry 2020,
85, 196-207.
42. Lalinde, J. A. H.; Roongruangsree, P.; Ilsemann, J.; Baeumer, M.; Kopyscinski, J.,
CO2 methanation and reverse water gas shift reaction. Kinetic study based on in situ
spatially-resolved measurements. Chemical Engineering Journal 2020, 390, 124629.
43. Bian, Z.; Chan, Y. M.; Yu, Y.; Kawi, S., Morphology dependence of catalytic
properties of Ni/CeO2 for CO2 methanation: a kinetic and mechanism study. Catalysis
Today 2020, 347, 31-38.133
44. Burger, T.; Donaubauer, P.; Hinrichsen, O., On the kinetics of the co-methanation of
CO and CO2 on a co-precipitated Ni-Al catalyst. Applied Catalysis B: Environmental
2021, 282, 119408.
45. Tauer, G.; Kern, C.; Jess, A., Transient Effects during Dynamic Operation of a Wall‐
Cooled Fixed‐Bed Reactor for CO2 Methanation. Chemical Engineering & Technology
2019, 42 (11), 2401-2409.
46. Kreitz, B.; Wehinger, G. D.; Turek, T., Dynamic simulation of the CO2 methanation
in a micro-structured fixed-bed reactor. Chemical Engineering Science 2019, 195, 541-
552.
47. Zimmermann, R. T.; Bremer, J.; Sundmacher, K., Optimal catalyst particle design for
flexible fixed-bed CO2 methanation reactors. Chemical Engineering Journal 2020,
387, 123704.
48. Fischer, K. L.; Langer, M. R.; Freund, H., Dynamic Carbon Dioxide Methanation in a
Wall-Cooled Fixed Bed Reactor: Comparative Evaluation of Reactor Models.
Industrial & Engineering Chemistry Research 2019, 58 (42), 19406-19420.
49. Anderson, J. B., A criterion for isothermal behaviour of a catalyst pellet. Chem. Eng.
Sci. 1963, 18 (2).
50. Mears, D. E., Tests for Transport Limitations in Experimental Catalytic Reactors.
Industrial & Engineering Chemistry Process Design and Development 1971, 10 (4),
541-547.
51. Weisz, P. B.; Prater, C. D., Adv. Catal. 1954, 6, 142-196.
52. Eshraghi, A.; Mirzaei, A. A.; Rahimi, R.; Atashi, H., A simple and low cost method
for the synthesis of metallic cobalt nanoparticles without further reduction as an
effective catalyst for Fischer–Tropsch Synthesis. Reaction Kinetics, Mechanisms and
Catalysis 2021.
53. Niu, C.; Li, H.; Xia, M.; Wang, J.; Chen, C.; Ma, Z.; Jia, L.; Hou, B.; Li, D., Mass
transfer advantage of hierarchical structured cobalt-based catalyst pellet for Fischer–
Tropsch synthesis. AIChE Journal 2021, 67 (6), e17226.
54. Mandić, M.; Todić, B.; Živanić, L.; Nikačević, N.; Bukur, D. B., Effects of Catalyst
Activity, Particle Size and Shape, and Process Conditions on Catalyst Effectiveness134
and Methane Selectivity for Fischer–Tropsch Reaction: A Modeling Study. Industrial
& Engineering Chemistry Research 2017, 56 (10), 2733-2745.
55. Robota, H. J.; Richard, L. A.; Deshmukh, S.; LeViness, S.; Leonarduzzi, D.; Roberts,
D., High Activity and Selective Fischer–Tropsch Catalysts for Use in a Microchannel
Reactor. Catalysis Surveys from Asia 2014, 18 (4), 177-182.
56. Turton, R.; Bailie, R. C.; Whiting, W. B.; Shaeiwitz, J. A., Analysis, synthesis and
design of chemical processes. Pearson Education: 2008.
57. Perry, R. H.; Green, D. W., Perry's Chemical Engineering Handbook, 1997. McGrawHill.
58. Cheng, J.-K.; Lee, H.-Y.; Huang, H.-P.; Yu, C.-C., Optimal steady-state design of
reactive distillation processes using simulated annealing. Journal of the Taiwan
Institute of Chemical Engineers 2009, 40 (2), 188-196.
59. Vlap, H.; van der Steen, A.; Knijp, J.; Holstein, J.; Grond, L., Power-to-Gas project
in Rozenburg, The Netherlands (Report No.; GCS. 15. R24613, Rev. 0). DNV GL Oil
& Gas 2015.
60. Giglio, E.; Deorsola, F. A.; Gruber, M.; Harth, S. R.; Morosanu, E. A.; Trimis, D.;
Bensaid, S.; Pirone, R., Power-to-gas through high temperature electrolysis and carbon
dioxide methanation: reactor design and process modeling. Industrial & Engineering
Chemistry Research 2018, 57 (11), 4007-4018.
61. Schaaf, T.; Grünig, J.; Schuster, M. R.; Rothenfluh, T.; Orth, A., Methanation of CO
2-storage of renewable energy in a gas distribution system. Energy, Sustainability and
Society 2014, 4 (1), 1-14.
62. De Saint Jean, M.; Baurens, P.; Bouallou, C., Parametric study of an efficient
renewable power-to-substitute-natural-gas process including high-temperature steam
electrolysis. international journal of hydrogen energy 2014, 39 (30), 17024-17039.
63. Ridler, D. E.; Twigg, M. V., Steam reforming. Catalyst Handbook 1989, 2.
64. API 617 - Axial and Centrifugal Compressors and Expander-compressors America
Petroleum Institue: 2014.
65. API 618 - Reciprocating Compressors for Petroleum, Chemical, and Gas Industry
Services. American Petroleum Institute: 2009.135
66. Leva, M.; Weintraub, M.; Grummer, M.; Clark, E. L., Cooling of Gases through
Packed Tubes. Industrial & Engineering Chemistry 1948, 40 (4), 747-752.
67. Berger, R. J.; Pérez-Ramı́rez, J.; Kapteijn, F.; Moulijn, J. A., Catalyst performance
testing: bed dilution revisited. Chemical Engineering Science 2002, 57 (22), 4921-
4932.
68. Bremer, J.; Rätze, K. H. G.; Sundmacher, K., CO2 methanation: Optimal start-up
control of a fixed-bed reactor for power-to-gas applications. AIChE Journal 2017, 63
(1), 23-31.
69. El Sibai, A.; Rihko Struckmann, L. K.; Sundmacher, K., Model-based Optimal
Sabatier Reactor Design for Power-to-Gas Applications. Energy Technology 2017, 5
(6), 911-921.
70. Gruber, M.; Wiedmann, D.; Haas, M.; Harth, S.; Loukou, A.; Trimis, D., Insights
into the catalytic CO2 methanation of a boiling water cooled fixed-bed reactor:
Simulation-based analysis. Chemical Engineering Journal 2021, 406, 126788.
71. Kao, Y.-L.; Lee, P.-H.; Tseng, Y.-T.; Chien, I. L.; Ward, J. D., Design, control and
comparison of fixed-bed methanation reactor systems for the production of substitute
natural gas. Journal of the Taiwan Institute of Chemical Engineers 2014, 45 (5), 2346-
2357

無法下載圖示 全文公開日期 2026/10/06 (校內網路)
全文公開日期 2026/10/06 (校外網路)
全文公開日期 2026/10/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE